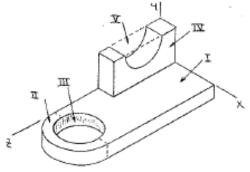

Engineering Statics – MECH 223

Review Problems for the Final Exam – Set 2

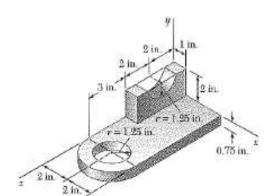
1. A rear-wheel-drive car is stuck in the snow between other parked cars as shown. In an attempt to free the car, three students exert forces on the car at points *A*, *B* and *C* while the driver's actions result in a forward thrust of

driver's actions result in a forward thrust of 40 lb acting parallel to the plane of rotation of each rear wheel. Treating the problem as two-dimensional, determine the equivalent force-couple system at the car center of mass G, and locate position x of the point on the car centerline through which the resultant passes. Neglect all forces not shown.

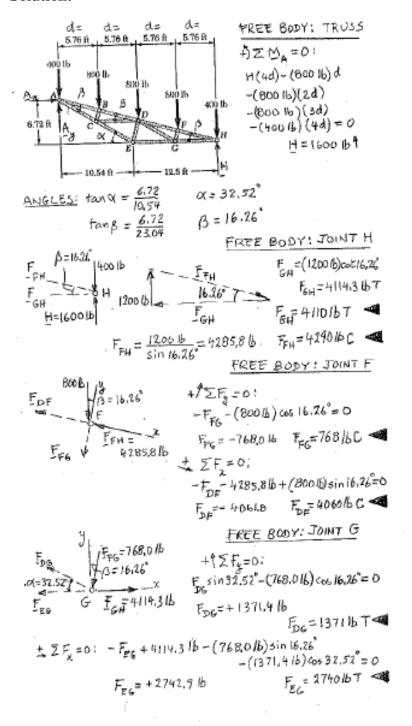

Solution:

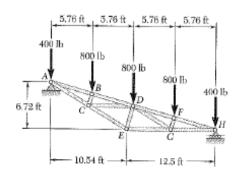
Use
$$\frac{1}{12}$$
 system at G:
 $R = \sum F = (80 + 40 + 40 + 50 \sin 30^{\circ}) \frac{1}{2}$
 $+(50 \cos 30^{\circ} + 70) \frac{1}{2}$
 $= 185 \frac{1}{2} + 113.3 \frac{1}{2} \frac{16}{2}$
 $M_{q} = 70(66) + 50 \sin 30^{\circ} (36) = 5520 \frac{16}{2}$
 $= \frac{160 \cdot 16 - 9}{460 \cdot 16 - 9} (4)$
For line of action of resultant:
 $\sum R = M_{G}$
 $(x_{1}^{2} + y_{2}^{2}) \times (185 \frac{1}{2} + 113.3 \frac{1}{2}) = 1460 \frac{1}{2}$
 $(x_{1}^{2} + y_{2}^{2}) \times (185 \frac{1}{2} + 113.3 \frac{1}{2}) = 1460 \frac{1}{2}$
 $= 113.3 \times -185 \times 9 = 1460$
 $= 113.3 \times -185 \times 9 = 1460$

2. For the machine element shown, locate the *z* coordinate of the center of gravity.

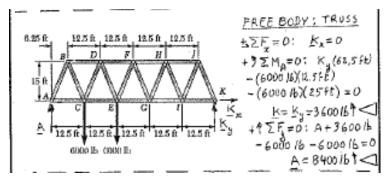

Solution:

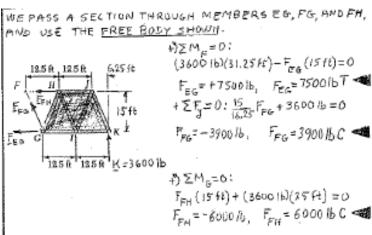
FIRST ASSUME THAT THE MACHINE ELEMENT IS HOMOGENEOUS SO THAT ITS CENTER OF GRAVITY WILL COINCIDE WITH THE CENTROIS OF THE CORRESPONDING VOLUME.

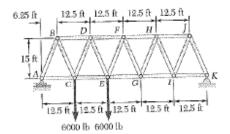

	V. 1113	2, IN.	ΞV, 1N+
Ţ	(4)(0.75)(7) = ZI	3.5	73.5
$\underline{\pi}$	8(2)2(0.75)=4.7124	7+ 354 = 7.84BB	36,987
	-71 (1.25)2(0,75)=-3.6816	7	-25,771
	(1)(2)(1)	2	16
Σ	- 2 (1.25)2(1) =- 2.4544	2	- 4.9088
Σ.	27.576		95.807
HAVE - = == V = EEV = E(27.576143)=95.80714			


2 = 3,47 INL

3. Determine the force in each of the embers located to the right of *DE* for the inverted Howe roof truss shown. State whether each member is in tension or compression.

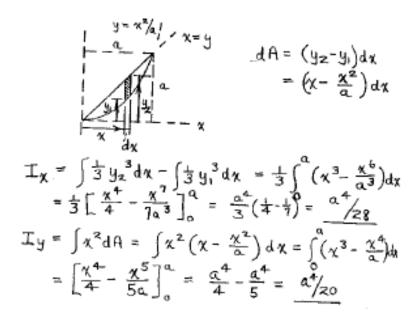

Solution:

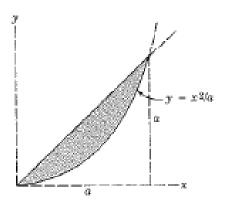




4. A Warren bridge truss is loaded as shown. Determine the force in members *EG*, *FG*, and *FH*.

Solution:





5. Determine the moments of inertia of the shaded area about the *x*- and *y*-axes. Use the same differential element for both calculations.

Solutions:

