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ABSTRACT

The framework of mean-field games (MFGs) is used for modeling the collective dynamics of large populations of non-cooperative decision-
making agents. We formulate and analyze a kinetic MFG model for an interacting system of non-cooperative motile agents with inertial
dynamics and finite-range interactions, where each agent is minimizing a biologically inspired cost function. By analyzing the associated
coupled forward–backward in a time system of nonlinear Fokker–Planck and Hamilton–Jacobi–Bellman equations, we obtain conditions for
closed-loop linear stability of the spatially homogeneous MFG equilibrium that corresponds to an ordered state with non-zero mean speed.
Using a combination of analysis and numerical simulations, we show that when energetic cost of control is reduced below a critical value,
this equilibrium loses stability, and the system transitions to a traveling wave solution. Our work provides a game-theoretic perspective to the
problem of collective motion in non-equilibrium biological and bio-inspired systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0230729

How can we understand phase transitions in collective motion of
a population of motile agents making individually optimal deci-
sions over time? Mean-field game (MFG) theory is a mathematical
framework for modeling such systems. We study a system con-
sisting of a large number of agents that optimally modulate their
acceleration to minimize the long term average of a weighted sum
of two costs. The first is the total energy use, and the second
penalizes the mismatch between the local mean speed and the pre-
ferred speed. We show that the system transitions from a spatially
homogeneous ordered state to a traveling wave as the energetic
cost is reduced below a critical value.

I. INTRODUCTION

This paper is concerned with phase transitions in the collective
motion of optimal decision-making non-cooperative motile agents.
Collective motion and synchronization continues to be actively
studied in many scientific domains.1–6 In purely physical systems,
the interactions between particles are given by physical laws, and
systems are studied using agent-based (or microscopic), kinetic,
and hydrodynamics models that incorporate those laws. On the
other hand, models for systems involving decision-making agents,

e.g., bird flocking, traffic, human crowds, and robot swarms, often
incorporate other types of interactions, such as collision avoidance,
alignment, and cohesion toward the mean. Most commonly, these
latter types of interactions are captured in phenomenological models
using physical analogies.

A different “inverse modeling” approach7 is to stipulate that
the collective behavior of a population of decision-making agents
is a solution to collective optimization or an optimal control prob-
lem. When considering a large number of non-cooperative agents
making sequential decisions, the framework of Mean-Field Games
(MFGs)8 is appropriate. In a MFG system, the collective behavior
is the result of each agent solving an optimal control problem that
depends on its own state and control as well as the collective state.9,10

MFGs formulated in continuous state space and time are described
by a coupled set of forward–backward in time nonlinear partial dif-
ferential equations (PDEs). While standard kinetic or hydrodynamic
equations used for modelling collective behavior are initial value
problems (IVPs or evolution PDEs), the MFG systems have a for-
ward–backward in a time structure and, hence, consist of a boundary
value problem (BVP in time PDEs).

In evolution PDEs, phase transitions3,11,12 in collective behav-
ior are studied via stability and bifurcation analysis of steady or
time-periodic states. In recent years, similar questions are being
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explored in the context of MFGs, where bifurcations can be inter-
preted as phase transitions in the collective behavior of optimal
decision-making agents as problem parameters, such as the unit
cost of control, are varied. While uniqueness of solutions in MFGs
is guaranteed under certain monotonicity conditions,13 there is an
increasing interest14–22 in studying MFGs that do not satisfy such
conditions and, hence, are expected to have multiple co-existing
steady states.

In this context, starting with the seminal work of Yin et al.,23

several authors have studied the phase transition from a “disor-
dered” steady state to an “ordered” traveling wave solution in the
MFG problem involving synchronization of oscillators.24,25 The sys-
tem involves globally cost-coupled agents with first-order dynam-
ics (i.e., without inertia), moving on a circular domain. Hence,
these MFG models can be understood as “inverse models” for the
Kuramoto dynamics.26 Other works16,17 have proved the existence of
time-periodic solutions in certain classes of MFGs set in periodic
spatial domains.

In this paper, we study phase transitions in a MFG “inverse
model” for the kinetic Czirók model,27 where unlike all the works
discussed above, the population consists of interacting inertial
agents, i.e., the agent dynamics are second-order in time, and the
agents directly control their acceleration. The original Czirók self-
propelled particle (SPP) model was proposed as a 1D simplification
of the 2D Vicsek flocking model.1 These biologically inspired inter-
acting particle system models, first proposed in the 1990s, have
proven highly influential in the development of the field of active
matter.28 Various interactions considered in these models include
velocity alignment with the mean,1 pairwise velocity alignment,4

position-based alignment,29,30 and hydrodynamic coupling.31

The ordered states of the Czirók model include spatially homo-
geneous equilibria and spatially inhomogeneous traveling waves.
We show that the kinetic MFG inverse model that we derive from
the Czirók model inherits these features. We provide stability anal-
ysis of the spatially homogeneous equilibria of the kinetic MFG.32

Furthermore, we numerically show the phase transition in the MFG

to traveling waves as the equilibrium states lose stability when the
unit cost of control is reduced below a critical value. Our analy-
sis combines techniques use to study generalized Kuramoto mod-
els with inertia33,34 and invariant subspace methods employed in
the study of Riccati equations35,36 as well as linear-quadratic (LQ)
MFGs.37

II. CZIRÓK MODEL REVISITED

In this section, we briefly review the Czirók27,38 model and pro-
vide new stability analysis of the coarse grained PDE, which sets the
stage for the stability analysis of the MFG model in Secs. III A and
III B.

The Czirók SPP model consists of n agents, where each agent
is moving on a 1D periodic domain [0, l]. The second-order dynam-
ics of the ith agent are given by the stochastic differential equation
(SDE),

dxi = uidt, (1)

dui = [G(〈u〉i)− ui]dt + σdwi(t), (2)

where 〈u〉i = 1
n

∑n
j=1 ujφ(‖xj − xi‖), and ‖xj − xi‖ = min(|xj − xi|,

l − |xj − xi|) is the distance on the torus between the positions of
the ith and jth agents. The wi are independent Brownian motions,
and σ is the noise intensity. The finite-range interaction ker-

nel φ(x) = l
2

× 1[0,1] with 1
l

∫

l

0
φ(‖x‖)dx = 1, and G(u) = h+1

5
u

− h
125

u3. Here, G(u)− u is the negative gradient of a potential whose
minima are the preferred mean speeds. Hence, the agent evolution
can be considered noisy gradient descent that drives the population
into a preferred collective state. Several studies have employed the
Czirók model and its variants with similar forcing terms to explain
collective behavior seen in nature.39,40

In the n → ∞ limit, the nonlinear PDE describing the evolu-
tion of density ρ(t, x, u) is given by the Fokker–Planck equation,

∂ρ(t, x, u)

∂t
= u

∂ρ(t, x, u)

∂x
− ∂

∂u

([

G

(∫ L

0

∫ ∞

−∞
u′φ(‖x′‖)ρ(t, x − x′, u′)du′dx′

)

− u

]

ρ(t, x, u)

)

+ 1

2
σ 2 ∂

2ρ(t, x, u)

∂u2
. (3)

Note that this equation is degenerate since there is no diffu-
sion in the spatial (x) variable. The system has spatially homoge-
neous equilibrium states ρξ (u) of the form ρξ (u) = 1

l
Fξ (u), where

Fξ (u) = 1√
πσ 2

e−(u−ξ)2/σ 2
, and ξ is the mean speed of the pop-

ulation satisfying the fixed point equation ξ = G(ξ). This fixed
point equation has a unique “disordered” equilibrium with ξ

= 0 for h < 4 and two additional ordered equilibria with ±ξ 6= 0
for h > 4.

A. Linearization and the operator eigenvalue equation

We focus our stability analysis on the ordered (ξ 6= 0) spa-
tially homogeneous equilibria, which exist when h > 4. It is known

that for h > 4, the disordered equilibrium is unstable. We linearize
Eq. (3) around ρξ (u), and note that F′

ξ (u) = − 2(u−ξ)
σ 2 Fξ (u). We take

the perturbed state to be of the form

ρ(t, x, u) = ρξ (u)+ ε
√

ρξ (u)ρ̄(t, x, u) (4)

and expand the perturbation ρ̄ using spatial Fourier decomposition,

ρ̄(t, x, u) =
∑

k=0,±1,±2,...

ρ̂k(t, u)e
i2πkx/l. (5)

We will work in the space of square-integrable complex-valued
functions on the real line; i.e., we will assume ρ̂(t, .) ∈ L2(R, du),
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with inner product 〈a, b〉 =
∫ ∞

∞ ā(u)b(u)du. The resulting lin-

earized evolution equation for the kth Fourier mode is

∂ρ̂k(t, u)

∂t
= Lkρ̂k =

(

Lk
loc,1 + Lk

nonloc

)

ρ̂k, (6)

where

Lk
loc,1[f](u) =

[−i2πku

l
− [(u − ξ)2 − σ 2]

2σ 2

]

f(u)+ 1

2
σ 2 ∂

2f(u)

∂u2
,

(7)

Lk
nonloc[f](u) = 2(u − ξ)

σ 2

√

Fξ (u)G
′(ξ)φk

(∫

u′√Fξ (u′)f(u′)du′
)

.

(8)

The eigenfunctions and eigenvalues of the operator Lk
loc,1 can be

computed explicitly as follows. We perform a change of variables34

u = g(v) = a1v + a2, where a1 = σ/
√

2 and a2 = ξ − 2ikπσ 2/l.
With this substitution, the eigenvalue equation for Lk

loc,1 reduces to

αkρ̂loc,k =
[(

1

2
− v2

4
+ c2(k)

)

ρ̂loc,k + ∂2ρ̂loc,k

∂v2

]

. (9)

It is known41 that the eigenvalue equation (9) has solutions

αk,p = −p + c2(k), p = 0, 1, 2, . . . . Here, c2(k) = − 2π2k2σ 2

l2
− 2ikπξ

l
.

The corresponding eigenfunctions are parabolic cylinder func-

tions Dp(v) = 2− p
2 e

−v2

4 Hp

(

v√
2

)

= e
−v2

4 H̃p(v). Here, Hp are the

physicist’s Hermite polynomials and H̃p are the probabilist’s

Hermite polynomials. Hence, operator Lk
loc,1 also has the same

eigenvalues αk,p. Its eigenfunctions are ηk,p(u) = z(p)Dp

(

g
−1(u)

)

= z(p)Dp

(√
2
σ

(

u − ξ + 2ikπσ 2

l

))

. Here, z(p) =
√

1√
2πa1p!

is a nor-

malizing factor. The adjoint (Lk
loc,1)

∗
has eigenvalues ᾱk,p and eigen-

functions ψk,p = η̄k,p. Note that due to our chosen normaliza-
tion, 〈ηk,p,ψk,q〉 = δpq. Hence, the set {ηk,p,ψk,q}p=0,1,...,q=0,1,...

forms

a biorthogonal eigenfunction basis set of L2[R, du].
With the eigenfunctions and eigenvalues of the local operator

at hand, we can derive the characteristic equation of full operator Lk

as follows. Let (λ, ρ̂) be an eigenvalue–eigenfunction pair of Lk. The
eigenvalue equation is

λρ̂(u) = Lk
loc,1[ρ̂](u)+ g0(u)〈 ¯̂ρ, s〉, (10)

where we have defined functions g0(u) ,
2(u−ξ)
σ 2

√

Fξ (u)G
′(ξ)φk and

s(u) , u
√

Fξ (u).

Let Rk
1,λ = (Lk

loc,1 − λ)
−1

be the resolvent of Lk
loc,1. Then, the

action of Rk
1,λ on an arbitrary complex-valued function f(u) is

Rk
1,λ[f](u) =

∑∞
p=0

〈ψk,p ,f〉
αk,p−ληk,p(u). Using this relation, Eq. (10) can be

rewritten as ρ̂ = −
∑∞

p=0

〈ψk,p ,g0〉〈 ¯̂ρ,s〉
αk,p−λ ηk,p(u). Taking the inner prod-

uct of the conjugate of this expression with s, canceling common
terms on both sides, and another conjugate operation yields the

FIG. 1. (a) The real (solid) and imaginary (dashed) components of the eigenvalue
of Lk (for h = 5, k = 1) closest to the imaginary axis as a function of noise inten-
sity σ . The system is unstable for σ ≤ σc = 1.8 as the real part is positive in that
range. (b) The spectrum of Lk at the threshold of stability, σ = σc.

characteristic equation for Lk
loc,1,

1 =
∞

∑

p=0

〈ψk,p, g0〉〈η̄k,p, s〉
λ− αk,p

=
∞

∑

p=0

〈η̄k,p, g0〉〈η̄k,p, s〉
λ− αk,p

. (11)

To verify our analysis, we solve Eq. (11) for l = 10, h = 5, and 0.2
≤ σ ≤ 2.5 using 20 eigenfunctions for each Fourier mode. As shown
in Fig. 1, the k = 1 Fourier mode loses stability at σ = σc = 1.8,
which matches the prediction in Garnier et al.38

1. Transition to a traveling wave

When a spatially homogeneous equilibrium ρξ (u) (ξ 6= 0) loses
stability, the system converges to a stable traveling wave,38 i.e.,
a time-varying spatially non-homogeneous solution of the form
ρ(t, x, v) = ρ̃(x − ωt, v). In Fig. 2, we show one such solution
obtained by numerically solving the IVP equation (3) in the open-
source software Dedalus.42 We note that such “density waves” have
been observed in swarms in nature, and there are several other SPP
models, which also possess such solutions.43–46

III. A MEAN-FIELD GAME CZIRÓK MODEL

To construct the kinetic MFG model, we consider the inter-
acting particle system of n agents, in which the ith agent has the

FIG. 2. The marginal density

∫

R
ρ(t, x, v)dv of a traveling wave solution of the

Czirók model [Eq. (3)] for h = 5, σ = 0.8 < σc. This solution is the steady state
reached upon perturbing the unstable spatially homogeneous equilibrium ρξ (u),

where

∫

R
ρξ (v)dv = 1

l
= 0.1.
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dynamics of the form

dxi = uidt, (12)

dui = αidt + σdwi(t), (13)

where (xi(t), ui(t)) are its position and speed, and αi(t) is its cho-
sen control. Each agent seeks to minimize the long term average of
the sum of two costs. The first cost depends on a weighted mean
speed of the population around the agent’s position, and the other is
a measure of the energy spent by the agent. The total cost is

J = lim sup
T→∞

1

T

∫ T

0

[c((xi, ui); (x, u)−i)+ rα2
i ]dt, (14)

with the cost-coupling function inspired by the interaction term in
the Czirók model [Eq. (2)],

c((xi, ui); (x, u)−i) = ([G(〈u〉i)− ui])
2 , (15)

where (x, u)−i = {(x1, u1), (x2, u2), . . . , (xi−1, ui−1), (xi+1, ui+1), . . . ,
(xn, un)} represents the rest of the population. Here, r is the unit cost
of control. While in the Czirók model, each agent is prescribed a cer-
tain force (or acceleration) function [the deterministic term on the
r.h.s. in Eq. (2)], in the MFG model, the agent is also considering the
energetic cost of its actions. In the n → ∞ population limit, we can
approximate the cost-coupling function as15

c[ρ](t, x, u) =
[

G

(∫∫

u′φ(‖x′‖)ρ(t, x − x′, u′)du′dx′
)

− u

]2

.

(16)

Using standard techniques,23,47 we can show that the cor-
responding MFG system consist of the following nonlinear
Fokker–Planck (FP) and Hamilton–Jacobi–Bellman (HJB) equa-
tions governing the density ρ(x, u, t) and the relative value function
h(x, u, t), respectively,

∂ρ

∂t
= −u

∂ρ

∂x
+ 1

2r

∂

∂u

{

ρ
∂h

∂u

}

+ σ 2

2

∂2ρ

∂u2
, (17)

∂h

∂t
= χ − c[ρ] − u

∂h

∂x
+ 1

4r

(

∂h

∂u

)2

− σ 2

2

∂2h

∂u2
, (18)

where χ is the minimum average cost. The PDEs can be solved
given an initial density ρ(0., .), the required final condition
limt→∞ h(t, ., .) = 0, and appropriate decay conditions in space. The
optimal control α(t, x, u) = − 1

2r
∂h
∂u

. It is easily verified that the
(ρξ∗(u), hξ∗(u)) is a stationary solution to the MFG equations, where

ρξ∗(u) = 1
l
Fξ∗(u), Fξ∗(u) = 1√

π
√

rσ 2
e−(u−ξ∗)2/(√rσ 2), and hξ∗(u) =

√
r(u − ξ ∗)2. Here, ξ ∗ is again the mean speed of the population,

satisfying G(ξ ∗) = ξ ∗, and χ = σ 2
√

r. Hence, similar to the Czirók
model discussed in Sec. II, the MFG model also possesses three
spatially homogeneous equilibria for h > 4, among which the two
equilibria with ±ξ ∗ 6= 0 are the ordered states.

A. Linearization and the operator eigenvalue equation

We linearize the MFG equations (17) and (18) around an
ordered equilibrium (ρξ (u), hξ (u)) with ξ = ξ ∗ 6= 0. As in Sec. II A,

we restrict the stability analysis to a class of density perturba-
tions that are exponentially decaying in u; i.e., we choose ρ(t, x, u)
= ρξ (u)+ ε

√

ρξ (u)ρ̄(t, x, u), where ρ̄(t, x, .) ∈ L
2{R, du}. In the

case of the value function, the perturbations are restricted to
have a bounded exponential growth rate; i.e., we choose h(t, x, u)

= hξ (u)+ ε h̄(t,x,u)√
ρξ (u)

, where h̄(t, x, .) ∈ L
2{R, du}. We expand the

perturbations using spatial Fourier decompositions, ρ̄(t, x, u)

=
∑

k=0,±1,±2,... ρ̂k(t, u)e
i2πkx/l, and h̄(t, x, u) =

∑

k=0,±1,±2,... ĥk(t, u)

ei2πkx/l. With these substitutions, the linearized FP equation is

∂ρ̂k(t, u)

∂t
= − i2πku

l
ρ̂k − L̃locρ̂k − 1

rσ 2
L̃locĥk, (19)

where L̃loc ,

[

[(u−ξ)2−√
rσ 2]

2rσ 2

]

− σ 2

2
∂2

∂u2 is a self-adjoint operator.

Hence, Lk
loc,1 = − i2πku

l
− L̃loc.

The linearized HJB equation is

∂ ĥk(t, u)

∂t
= − i2πku

l
ĥk(t, u)+ L̃locĥk(t, u)− c̃[ρ̂k], (20)

where c̃[ρ̂k] = 2(ξ − u)G′(ξ)φk

√

Fξ (u)
(∫

u′√Fξ (u′)ρ̂k(t, u
′)du′

)

.

We define Lk
loc,2 , − i2πku

l
+ L̃loc = −(Lk

loc,1)
∗
. The eigenvalues of

Lk
loc,2 are βk,p = −ᾱk,p = p√

r
− i2πkξ

l
+ 2k2π2σ 2r

l2
. The corresponding

eigenfunctions are ψk,p(u). The coupled system of equations for the
linearized MFG are

∂ρ̂k(t, u)

∂t
= Lk

loc,1ρ̂k(t, u)− 1

rσ 2
L̃locĥk(t, u), (21)

∂ ĥk(t, u)

∂t
= −c̃[ρ̂k] + Lk

loc,2ĥk(t, u). (22)

Let ({ρ̂k, ĥk}, λ) be a eigenfunction–eigenvalue pair for the lin-
earized MFG system. The abstract operator eigenvalue equation can
be written as

λ





ρ̂k

ĥk



 =





Lk
loc,1 − 1

rσ 2 L̃loc

0 Lk
loc,2









ρ̂k

ĥk



 +





0

−g(u)〈 ¯̂ρk, s〉



 , (23)

where g(u) , 2(ξ − u)
√

Fξ (u)G
′(ξ)φk and s(u) = u

√

Fξ (u). Anal-
ogous to the development in Sec. II A, we employ the resolvents
Rk

1,λ of Lk
loc,1 and Rk

2,λ of Lk
loc,2 to obtain the characteristic equation for

the MFG eigenvalues. Here, Rk
2,λ[f](u) =

∑∞
q=0

〈ηq ,f〉
βk,q−λψk,q(u). Using

this relation, the second equation of Eq. (23) can be written as

ĥk =
∑∞

q=0

〈ηq ,g〉〈 ¯̂ρk ,s〉
βk,q−λ ψk,q(u). Substituting this expression of ĥk in the

first equation of Eq. (23) yields

Rk
1,λ[ρ̂k](v) = 1

rσ 2

∞
∑

q=0

〈ηq, g〉〈 ¯̂ρk, s〉
βk,q − λ

L̃loc[ψk,q](u). (24)

After applying (Rk
1,λ)

−1
to the above equation, we take the inner

product of the conjugate of the resulting equation with s. Cancel-
ing common factors from both sides and taking the conjugate again
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yields the characteristic equation for the MFG eigenvalues,

1 = 1

rσ 2

∞
∑

p=0

∞
∑

q=0

〈η̄k,p, s〉〈ψ̄q, g〉〈η̄k,p, L̃loc[ψk,q]〉
(αk,p − λ)(βk,q − λ)

. (25)

B. Linear stability of the ordered MFG equilibria

Since a MFG system is a forward–backward system, the sta-
bility of an equilibrium (or more general invariant sets, such as
periodic orbits or traveling waves) needs to be defined in a way that
captures the feedback nature of the system. Consider the linear two-
point BVP on the time interval [0, ∞] consisting of the linearized
MFG equations (21) and (22) along with a prescribed initial den-

sity perturbation ρ̂k(0, .), and final value function limt→∞ ĥk(t, .) = 0
(inherited from the HJB equation).

Definition 1 (Refs. 15, 23, 48, and 49): A MFG equilibrium
(ρξ , hξ ) of the MFG system (17) and (18) is said to be linearly sta-

ble if the above defined BVP has a unique solution [ρ̂k(t, .), ĥk(t, .)]
such that limt→∞ ρ̂k(t, .) → 0. In other words, any initial density per-
turbation decays to 0 in the closed loop as the time horizon goes to
∞.

To proceed with the stability analysis, we first obtain the
explicit form of the linear BVP discussed above, using the

eigenfunction expansions ρ̂k(t, u) =
∑

p Y1,p(t)ηk,p(u), and ĥk(t, u)

=
∑

p Y2,p(t)ψk,p(u). The prescribed initial condition on density

fixes the value of Y1(0), and the final condition on the value function
becomes limt→∞ Y2(t) = 0. The ODE system obtained by inserting
the expansions into Eqs. (21) and (22) is

[

Ẏ1

Ẏ2

]

= N

[

Y1

Y2

]

, (26)

where N ,

[

A1 B1

A2 B2

]

. The submatrices are (A1)q,p = αk,q−1δqp,

(A2)q,p = −〈ηk,q−1, g(u)〉〈s(u), ηk,p−1〉, (B1)q,p = −1
rσ 2 〈ψk,q−1, L̃loc

ψk,p−1〉, and (B2)q,p = βk,q−1δqp. Using the properties of operators
involved, we make the following observations. First, A1 is diagonal,
Re(σ (A1)) < 0, i.e., all eigenvalues of A1 lie in the left half plane, and
B2 = −A∗

1 . Second, B1 is Hermitian; hence, its eigenvalues are real,
with Re(σ (B1)) ≤ 0. Finally, A2 is a rank-1 non-Hermitian matrix.
The characteristic equation of N = 1+ P1 is

det(1+ P1 − λI) = det(1− λI)det(I + (1− λI)−1
P1) = 0,

(27)

where 1 =
[

A1 B1

0 B2

]

is an upper block triangular matrix with

explicitly known eigenvalues and P1 =
[

0 0
A2 0

]

is the rank-1 “per-

turbation.” Note that this is the explicit form of the characteristic
equation (25).

Next, we recall some results on Hamiltonian matrices and Ric-
cati theory.36 A 2m × 2m complex matrix H is called Hamiltonian

if JH + H∗J = 0, where J =
[

0 I

−I 0

]

. If H is Hamiltonian and λ is

an eigenvalue of H, then −λ̄ is also an eigenvalue of H. Necessarily,

FIG. 3. The spectrum (close to the imaginary axis) of the linearizedMFG operator
in Eq. (23) as the control cost r is varied for the Fourier mode k = 1. (a) r = 1.4,
(b) r = 1.1, (c) r = 0.95, and (d) r = 0.8.

every 2m × 2m Hamiltonian matrix is of the form

H =
[

A B
C D

]

, (28)

where D = −A∗, and B and C are both Hermitian. Associated with
H is a continuous time algebraic (matrix) Riccati equation (CARE):
XA − DX + XBX − C = 0. We say that an m × m matrix X that
solves the CARE is a stabilizing solution if A + BX is Hurwitz. We
will need the following result:

Theorem 1 (Chen and Huang50): Let H be a Hamiltonian
matrix of Eq. (28), with A Hurwitz (i.e., all its eigenvalues of A
lie in the left half plane). Suppose H does not have any eigenvalues
on the imaginary axis. Then, there exists an orthogonal (“Schur”)
transformation V such that

V∗HV =
[

H11 H12

0 H22

]

, (29)

where all eigenvalues of H11 are the stable eigenvalues of H. If we block

partition V =
[

V11 V12

V21 V22

]

, then

[

V11

V21

]

are the m stable Schur vectors

corresponding to the stable block H11. Furthermore, the matrix V11

is invertible, and X+ = V21V
−1
11 is the unique Hermitian stabilizing

solution of CARE.
Note that the matrix N in Eq. (26) is not Hamiltonian since

A2 is not Hermitian. We consider its “symmetrized” version, Ns

=
[

A1 B1
A2+A∗

2
2

B2

]

, which is a Hamiltonian matrix. Using the defini-

tions of the submatrices discussed above, it follows that the char-
acteristic equation of Ns reduces to that of N, i.e., Eq. (27). Hence,
N and Ns are similar matrices; i.e., they have the same eigenvalues.
This implies that there exists an invertible 2m × 2m complex matrix
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P s.t. Ns = P−1NP. Note P can be numerically obtained by eigenvalue
decomposition of N and Ns. Then, we have the following result:

Lemma 1: Suppose N defined in Eq. (26) does not have any
eigenvalues on the imaginary axis. Then, the BVP defined by Eq. (26)
along with arbitrary initial condition Y1(0) = Y10 and final condition
limt→∞ Y2(t) = 0 has a solution (Y1(t), Y2(t)) s.t. limt→∞ Y1(t) = 0.

Proof. Since Ns and N are similar, Ns also does not have
any eigenvalues on the imaginary axis. Then, Ns satisfies the con-
ditions of Theorem 1 since A1 is Hurwitz. Hence, there exists
a Hermitian stabilizing solution X+ for CARE corresponding

to Ns. Define U =
[

I 0
X+ I

]

such that U−1 =
[

I 0
−X+ I

]

. Then,

U−1NsU =
[

Ac B
0 −A∗

c

]

, where Ac = A1 + B1X+ is a stable matrix

by Theorem 1, and we have used the fact the X+ solves the CARE.

Now, define new states (Z1, Z2) via PU

[

Z1

Z2

]

=
[

Y1

Y2

]

. Note that PU

is invertible since it is the product of two invertible matrices. The
BVP system of Eq. (26) in the new variables is

[

Ż1

Ż2

]

= U−1P−1NPU

[

Z1

Z2

]

=
[

Ac B1

0 −A∗
c

] [

Z1

Z2

]

. (30)

From the second component of Eq. (30), we get Z2(t) = e−A∗
c tZ2(0).

Since Ac is Hurwitz, Z2 blows up unless we pick Z2(0) = 0. This
implies Z2(t) = 0 for all t ≥ 0. Using this in the first component
of Eq. (30), we obtain Z1(t) = eActZ1(0), and hence, limt→∞ Z1(t)
= 0. By invertibility of PU, the above two results imply that
limt→∞ Y1(t) = 0 and limt→∞ Y2(t) = 0. �

Note that if P =
[

P11 P12

P21 P22

]

, the initial condition Z1(0)

above is defined by (P11 + P12X+)Z1(0) = Y10. To obtain unique-
ness, we need the additional assumption that (P11 + P12X+) is
invertible, in which case the unique solution is (Y1(t) = (P11

+ P12X+)e
Act(P11 + P12X+)

−1Y10, Y2(t) = (P21 + P22X+)e
Act(P11

+ P12X+)
−1Y10).

From the above results, it follows that if the linearized MFG
system of Eq. (25) has no eigenvalues on the imaginary axis and the
invertibility assumption holds, the equilibrium solution (ρξ , hξ ) of
the MFG system (17) and (18) is linearly stable.

FIG. 4. The norm of Y1(t) (bold) and Y2(t) (dashed) as a function of time for
the unique solution [Y1(t), Y2(t)] of the BVP of Eq. (26). Here, r = 1.4 > rc, and
k = 1. We choose an arbitrary Y1(0), and the corresponding value of Y2(0) is
assigned according to Lemma 1.

FIG. 5. The critical unit control cost rc as a function of σ for h = 5.

C. Numerical results

To illustrate our theoretical results, we fix parameters L
= 10, h = 5, σ = 2, and compute the MFG eigenvalues (i.e., eigen-
values of matrix N) by numerically solving the algebraic equation
(25) using 22 eigenfunctions for each Fourier mode, i.e., 0 ≤ p, q ≤
21. As in the forward equation case, the k = 1 Fourier mode is
the relevant spatial mode for studying stability. Figure 3 shows the
eigenspectrum for k = 1 for various values of the unit control cost r.
Since the matrix N has the same spectrum as the Hamiltonian matrix
Ns, this spectrum is symmetric about the imaginary axis. At r = 1.4,
there are no imaginary axis eigenvalues. As r is decreased from 1.4,
a pair of eigenvalues approaches the imaginary axis, and eventually
collides on it at rc ≈ 0.95. As r is reduced further, the two eigenvalue
move away from each other up/down the imaginary axis.

According to Lemma 1, this implies that for r > rc, the MFG
equilibrium (ρξ , hξ ) is linearly stable in the sense of Definition 1.
We use Schur decomposition to compute X+ using the formula
in Theorem 1 and follow the construction of the BVP solutions
[Y1(t), Y2(t)] in Lemma 1. Figure 4 shows that the norm of the
unique solution for an arbitrarily chosen Y10 for r = 1.4 decays to
zero. The critical value of unit control cost decreases upon increasing
the noise intensity σ , as shown in Fig. 5.

1. Traveling wave solutions of the MFG

We look for solutions bifurcating from the spatially homoge-
neous equilibrium (ρξ , hξ ) for r < rc. It is known that MFGs exhibit
the turnpike property;51,52 i.e., the solution over a large but finite
time horizon spends most of its time near the solution of the infi-
nite time problem (the so-called ergodic solution). We implement
a Picard-iteration based algorithm for MFGs53 over a large time
horizon in Dedalus and find that for each r in an open interval
r ∈ (rc − ε, rc), the ergodic solution is a traveling wave solution of
the form (ρ(x − ωt, u), h(x − ωt, u)) to the MFG Eqs. (17) and (18).
Figure 6 shows the marginal density of the traveling wave solution
for r = 0.8. No traveling wave solutions were found for r > rc, in
which case the algorithm always converged to one of the two stable
equilibria (ρ±ξ∗ , h±ξ∗).

IV. CONCLUSIONS AND DISCUSSION

Via the MFG framework, we have studied transitions between
distinct collective behaviors in a population of non-cooperative
motile inertial agents that are interacting with their neighbors over
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FIG. 6. The marginal density

∫

R
ρ(t, x, v)dv of a traveling wave solution of the

MFG equations (17) and (18) for r = 0.8 < rc.

a finite distance and minimizing a biologically inspired cost func-
tion. The kinetic MFG model is shown to mimic phase transitions
previously observed in the phenomenological Czirók model.

The linear stability of the equilibrium states is equivalent to
the existence of a unique decaying solution to the linearized BVP
(in time) derived from the nonlinear MFG PDE system. We pro-
vide conditions on the spectrum of the linear operator for such
a solution to exist. The explicit calculations are carried out using
Fourier-Hermite discretization of the linearized PDE and use prop-
erties of Hamiltonian matrices and Riccati equations. The existence
of a traveling wave solution of the MFG when the equilibrium loses
stability is shown numerically. A rigorous bifurcation analysis will
be taken up in a future work.

While non-equilibrium systems cannot be described by a varia-
tional principle, the MFG inverse modelling approach adopted here
is based on a generalized optimality principle, which can potentially
be extended to kinetic and hydrodynamic descriptions of other sys-
tems with decision-making agents. We plan to study some of these
extensions in the near future.
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