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Abstract

Mean-field games (MFG) provide a statistical physics inspired modeling framework for decision

making in large-populations of strategic, non-cooperative agents. Mathematically, these systems

consist of a forward-backward in time system of two coupled nonlinear partial differential equations

(PDEs), namely the Fokker-Plank and the Hamilton-Jacobi-Bellman equations, governing the agent

state and control distribution, respectively. In this work, we study a finite-time MFG with a rich

global bifurcation structure using a reduced-order model (ROM). The ROM is a 4D two-point

boundary value problem obtained by restricting the controlled dynamics to first two moments of the

agent state distribution, i.e., the mean and the variance. Phase space analysis of the ROM reveals

that the invariant manifolds of periodic orbits around the so-called ‘ergodic MFG equilibrium’ play

a crucial role in determining the bifurcation diagram, and impart a topological signature to various

solution branches. We show a qualitative agreement of these results with numerical solutions of

the full-order MFG PDE system.

I. INTRODUCTION

Mean-field game (MFG) theory [1, 2] is a modeling framework for large-population non-

cooperative engineering and socio-economic systems. This theory combines optimal control

theory and game theory with ideas from statistical physics, where a ‘mean-field’ approxi-

mation is used to simplify the study of systems with a large number of particles. In sta-

tistical physics the particles are generally passive, i.e., driven solely by environmental or

inter-particle forces. On the other hand, MFGs are concerned with decision making or ‘ac-

tive’ particles (called agents). The MFGs are mathematically described by a coupled set of

forward-backward in time nonlinear partial differential equations (PDEs).

The MFG PDEs have a fundamentally different structure than the PDEs used to describe

most collective behavior in natural or engineering systems. These latter systems are generally

modeled via reaction-diffusion or kinetic/hydrodynamics equations, etc., which are evolution

equations solved forward in time. In the MFG systems, the collective behavior is the result of

each agent solving an optimal control problem that depends on its own state (and control),
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as well as the collective state [1, 3]. This imparts the MFG equations a forward-backward

in time structure.

In this work, we will work with a class of MFGs where the coupling between the agents is

solely though the cost function. Consider a population of N agents, where the vector-valued

state xi ∈ Rn of the ith agent is described by the following stochastic differential equation

(SDE) :

dxi(t) = f(xi(t), ai(t))dt+ σdWi(t).

Here ai ∈ A is the control input, A is the set of permissible control inputs, and Wi is the

standard n−dimensional Wiener (noise) process. The combined state of the population can

be described using the empirical distribution, whose density is m(x, t) =
1

N

N∑
i=1

δ(x− xi(t)).

The control ai of each agent at each time is chosen to minimize the cost

J(ai) = E{
∫ T

0

G(xi, ai, x−i)dt+ C(xi(T ))
}
, (1)

where G is the running cost that depends on the state and control of the ith agent as well

as on the states of the other agents, and C(x) is the terminal cost function. Here we use the

notation x−i = {x1, x2, . . . , xi−1, xi+1, . . . , xN}. MFG theory postulates that the solution of

the above problem in the limit N → ∞ can be obtained by assuming an exogenous density

m̂(x, t) during the optimization process of the ith agent [1]. Hence, the running cost term is

of the time-dependent form Ĝ(xi, ai; m̂(., t)). This renders the optimization problem solvable

by standard stochastic optimal control techniques [4, 5], and the optimal control is encoded

in the value function u(xi, t) which solves the Hamilton-Jacobi-Bellman (HJB) equation:

∂tu(x, t) + Ĥ(x,∇u(x, t), m̂(., t)) +
σ2

2
∆u(x, t) = 0, (2)

with terminal condition u(x, T ) = C(x). Here, the Hamiltonian Ĥ(x, p,m) = min
a∈A

(
Ĝ(x, a; m̂(., t))+

p.f(x, a)
)
, and the optimal feedback control can be obtained by a(x, t) = argmin

a∈A

(
Ĝ(x, a; m̂(., t))+

∇u(x, t).f(x, a)
)
once u(x, t) is known. The consistency condition of MFG requires that if

each agent follows the above control law a(x, t), then the resulting agent density must equal

the assumed exogenous density, i.e., m(x, t) = m̂(x, t). The density evolution is given by the
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Fokker-Plank (FP) equation

∂tm(x, t) +∇(f(x, a(x, t))m(x, t)) =
σ2

2
∆m(x, t), (3)

with initial condition m(x, 0) = m0(x). To make the system well-posed, boundary conditions

(in x) on (u,m) also need to be specified. Equations (2,3), together with the respective final

and initial conditions, and the boundary conditions, form the MFG PDE system. The MFG

system consists of two coupled nonlinear PDEs with a forward-backward structure, i.e., the

FP equation is well-posed forward in time, while the HJB is well-posed backward in time.

A pair (u,m) is the solution of the finite horizon MFG with time-horizon T if it solves Eqs.

(2,3), and satisfies the intial and final conditions as well as the boundary conditions.

Much of the research in the field of MFGs has focused on finding conditions on agent

dynamics and cost functions to guarantee existence and uniqueness of solutions of these

equations [1, 6]. The uniqueness of solutions is generally guaranteed when the PDEs satsify

certain monotonicity properties [7]. However, such monotonicity properties are satisfied only

in special cases, and multiplicity of solutions is expected to be ‘generic’.

This realization has led to recent interest in understanding and characterizing the multiple

solution branches of non-monotonic MFG systems using bifurcation theory and abstract

functional analytic techniques. Phase transitions in collective behavior such as flocking

[8], synchronization of oscillators [9], and traffic flow [10], are often studied via bifurcation

analysis of evolution PDEs. In the same vein, bifurcations of the solutions of the MFG

systems can be interpreted as phase transitions in the collective behavior of decision making

agents.

In one of first works in this topic [11], the authors applied bifurcation theoretic tools to

a nonlocal infinite time-horizon MFG system posed on a periodic 1D domain, and proved

the co-existence of a travelling wave time-periodic solution along with a steady (i.e., time-

independent) MFG solution. Further rigorous analytic results for the same problem were

recently obtained in [12, 13]. In [14], a bifurcation leading to multiple co-existing steady

MFG solutions was demonstrated in an infinite time-horizon MFG model posed on the

whole real line. In certain classes of non-monotonic finite time-horizon MFGs, abstract

bifurcation theory [15] along with eigenfunction expansions in periodic spatial domains were
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applied to prove the existence of time-periodic solutions [16, 17]. Another recent work uses

Aubry-Mather theory for proving the existence of time-periodic solutions in first-order MFGs

[18].

In addition to analytic techniques employed in the above mentioned works, the use of ex-

actly solvable and reduced-order models [19–21] along with geometric tools of dynamical sys-

tems theory [22] has provided valuable insight into solution regimes of non-monotonic MFGs.

In [20, 21], an exact mapping of the so-called quadratic MFGs into a pair of Schrodinger

equations was exploited to derive low-dimensional two-point boundary value problem (BVP)

models under various assumptions on relative strengths of different terms in the MFG sys-

tem, as well as on initial density. For instance, if the initial agent density is Gaussian, and

the attractive interaction term is dominant, the solution is expected to stay approximately

Gaussian for all times. In this case, a 4D BVP model was derived in [21] where the state

vector consists of the population mean and standard deviation, and their corresponding mo-

mentum variables. A key advantage of such low dimensional models is that their behaviour

can be understood using geometric tools of phase space analysis. In [21], by assuming that

the mean and variance dynamics are decoupled, the invariant manifolds of the equilibrium

point of a 2D reduced-order model of the infinite-time horizon (‘ergodic’) problem were used

to obtain qualitative and quantitative results for solutions of the corresponding full-order

finite-time horizon MFG PDE system.

The goal of this paper is to derive and analyze a related reduced-order 4D Hamiltonian

two-point BVP model of a finite-horizon MFG system that exhibits multiplicity of solutions

for large enough time-horizon T , and relate the origin of various solution branches to the 4D

phase space geometry. We demonstrate that the different solution branches are topologically

distinct, and that these solutions can be understood as transitions through a bottleneck

in the configuration space between the initial and final conditions. The phase space flow

in the bottleneck is organized by the cylindrical 2D stable and unstable manifolds of an

unstable periodic orbit that exists in the bottleneck. Similar transitions dynamics have been

previously studied in the context of the gravitational three-body problem [23, 24], chemical

kinetics [25], and structural mechanics [26]. The qualitative (i.e., topological) aspects of the

results from analysis of the BVP are shown to persist in numerically computed solutions of

the full-order MFG PDE.
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II. THE QUADRATIC MFG PDE AND REDUCED ORDER MODELING

We begin by recalling the setup of [21], and consider the case where the scalar state xi ∈ R

of ith agent is driven by a control term and standard Brownian noise as :

dxi(t) = ai(t)dt+ σdwi(t), (4)

and the running cost G = R − V̄ consists of two parts: a quadratic control penalization

term R(xi, ai) =
µa2i
2

, and a potential cost V̄ [m](xi) that depends on density of agents m.

The potential cost is further split into interaction and external potentials as V̄ [m](xi) =

f [m](xi) + U0(xi), where

f [m](xi) = g mα(xi),

U0(x) = −hx
2
i

2
− x4i

4
.

(5)

The resulting HJB and FP equations are:

∂tu(x, t)−
1

2µ
(∂xu(x, t))

2 +
σ2

2
∂xxu(x, t) = V̄ [m](x, t), (6)

∂tm(x, t)− 1

µ
∂x(m(x, t)∂xu(x, t))−

σ2

2
∂xxm(x, t) = 0, (7)

with a prescribed initial density m(x, 0) = m0(x), and a prescribed terminal value function

u(x, T ) = C(x(T )). The corresponding feedback control ai(t) = − 1

µ
∂xu(xi, t).

a. Ergodic MFG: In the limit of infinite time horizon (T → ∞), the MFG equations

reduce to the following steady state equations:

− λe − 1

2µ
(∂xu

e(x))2 +
σ2

2
∂xxu

e(x) = V̄ [me](x),

1

µ
∂x(m

e(x)∂xu
e(x)) +

σ2

2
∂xxm

e(x) = 0,

(8)

where the pair (me(x), ue(x)) is the ergodic equilibrium, and λe is the ergodic constant. It

has been shown [27] that solution of the long time horizon (i.e., T ≫ 1) finite time MFG

(Eqs. 6, 7) tends to approach and stay close to the solution (me(x), ue(x)) during the interval
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time 0 ≪ t ≪ T . This property is a recurring theme in calculus of variations and optimal

control problems, and is commonly referred to as the ‘turnpike property’ [28].

In [21], Cole-Hopf transformations Φ(x, t) = exp(
−u(x, t)
µσ2

) and Γ(x, t) =
m(x, t)

Φ(x, t)
, were

used to reduce the finite-time MFG system (Eqs. 6, 7) into the following pair of nonlinear

diffusions:

−µσ2∂tΦ(x, t) =
µσ4

2
∂xxΦ(x, t) + V̄ [m](x, t)Φ(x, t), (9)

µσ2∂tΓ(x, t) =
µσ4

2
∂xxΓ(x, t) + V̄ [m](x, t)Γ(x, t). (10)

By exploiting the analogy of the above equations with imaginary time nonlinear Schrodinger

equation, the following expressions for solutions of the finite-time MFG system in terms of

the ergodic solution pair (me(x), ue(x)) and ergodic constant λe were obtained:

Φ(x, t) = exp
( λet
µσ2

)
ψe(x), (11)

Γ(x, t) = exp
(
− λet

µσ2

)
ψe(x). (12)

b. Variational Principle Furthermore, it was shown in [21] that the Eqs.(9,10) can

be obtained as necessary conditions for the stationarity w.r.t (Φ,Γ) of the following action

functional :

S[Φ,Γ] =
∫ t

0

∫
R

[
− µσ2

2

(
(∂tΓ)Φ− (∂tΦ)Γ

)
− µσ4

2
(∂xΦ)(∂xΓ) + ΦU0(x)Γ + F [ΦΓ]

]
dxdt =

∫ t

0

Ldt,

(13)

where F [m] =

m∫
f(m′) dm′. Here the Lagrangian L =

∫
R

[
− µσ2

2

(
∂t(Γ)Φ − ∂t(Φ)Γ

)]
dx +

Etot. The total energy Etot = Ekin + Eipot + Eepot, is the sum of the kinetic term Ekin =
µσ4

2

∫
R
Φ∂xxΓdx (using integration by parts), the interaction potential Eipot =

∫
R
F [m]dx

and the external potential Eepot =

∫
R
U0(x)m(x, t)dx.
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A. Derivation of the BVP system in Lagrangian variables

We consider the scenario where the interaction potential is attractive, and dominates

the external potential. In this case, a Gaussian distribution with density mG(x, t) =
1√

2πϵ2S2
exp

(
−(x−X)2

2ϵ2S2

)
is a good approximation for a population of agents with mean

X(t) =

∫
xm(x, t) dx, and standard deviation Σ(t) = ϵS(t) =

√∫
x2m(x, t) dx−X2(t).

Here, we have introduced the parameter ϵ (with 0 < ϵ < 1), and use scaled standard devi-

ation S in order to facilitate the search for appropriate system parameters in the following

sections. In the spirit of Eqs. (11, 12), and following [21, 29], we use an anstaz for Φ(x, t)

and Γ(x, t) shown below:

Φ(x, t) = exp
(−γ + Px

µσ2

) 1

(2πϵ2S2)
1
4

exp
(
− (x−X)2

4ϵ2S2
(1− Λ

µσ2
)
)
,

Γ(x, t) = exp
(γ − Px

µσ2

) 1

(2πϵ2S2)
1
4

exp
(
− (x−X)2

4ϵ2S2
(1 +

Λ

µσ2
)
)
,

(14)

where γ(t) =
Λ(t)

4
+ γ0 is a necessary condition for the above ansatz to satisfy Eqs.

(9,10). Hence, Φ(x, t) and Γ(x, t) are effectively parameterized using four time-varying

scalar variables: Z = [X,S, P,Λ]⊺. Given a density and value function pair (m,u), we

can compute P (t) =

∫
−µσ2Φ(x, t) ∂x(Γ(x, t)) dx, and Λ(t) =

∫
−µσ2Φ(x, t)

(
x ∂xΓ(x, t) +

∂x
(
xΓ(x, t)

))
dx− 2XP , where we recall that ϕ(x, t) and Γ(x, t) are obtained via the Cole-

Hopf transformation.

The kinetic and interaction potential energies in this case are:

Ekin =
P 2

2µ
+

Λ2

8µ ϵ2S2
− µσ4

8 ϵ2S2
,

Eipot =
g

(2π)
α
2 (α + 1)3/2 (ϵ S)α

.
(15)

We approximate the external potential energy using a Taylor expansion of U0(x) around
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the mean X as follows:∫
U0(x)m

G(x, t) dx = U0(X) +

∫
(x−X)∂xU0(X)mG(x, t) dx+

1

2

∫
(x−X)2 ∂2xU0(X)mG(x, t) dx

+
1

3!

∫ (
x−X)3∂3xU0(X)mG(x, t) dx+

1

4!

∫ (
x−X)4∂4xU0(X)mG(x, t) dx+ . . . .

(16)

Using the fact that for the Gaussian distribution mG,

∫
(x−X)nmG dx =

(n− 1)!!(ϵS)n for n even,

0 for n odd,
(17)

where (n − 1)!! denotes the product of all odd numbers less than n, and keeping terms up

to the fourth order, we get:

Eepot = U0(X) +
1

2
(ϵS)2∂2xU0(X) +

1

4!
∂4xU0(X) 3(ϵS)4. (18)

By substituting Eqs.(15,18) and the ansatz Eq.(14) in Eq.(13), we obtain the reduced

functional S̄ =

∫
L̄(X, Ẋ, P, S, Ṡ,Λ) dt. The reduced Lagrangian L̄ is:

L̄(X, Ẋ, P,Σ, Σ̇,Λ) = −PẊ − ΛṠ

2S
+ U0(X) +

1

2
(ϵS)2∂2xU0(X) +

1

4!
∂4xU0(X) 3(ϵS)4

+
P 2

2µ
+

Λ2 − σ4 µ2

8µ (ϵS)2
+

g

(2π)
α
2 (α + 1)3/2 (ϵS)α

,
(19)

where we have used the relation γ̇ =
Λ̇

4
.

Using Euler-Lagrange equations
d

dt
(
∂L

∂Żi

) − ∂L

∂Zi

= 0 for i = 1, 2, 3, 4, we obtain the
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following coupled system of equations:

Ẋ =
P

µ
,

Ṗ = X3 + hX + 3(ϵS)2X,

Ṡ =
Λ

2µϵ2S
,

Λ̇ =
Λ2 − µ2σ4

2µ(ϵS)2
+

2gα

α + 1

1√
α + 1(2π)α/2

1

(ϵS)α
+ 2(ϵS)2(3X2 + h) + 6(ϵS)4.

(20)

The first two equations for X and P govern the evolution of the mean, and the last

two equations for S and Λ govern the variance of the Gaussian distribution. The BVP

system is obtained by appending the above system of equations with the initial and final

time conditions as follows:

X(0) =

∫
xm(x, 0) dx,

X(T ) =

∫
xm(x, T ) dx,

S(0) =
1

ϵ

√∫
x2m(x, 0) dx− (X(0))2,

S(T ) =
1

ϵ

√∫
x2m(x, T ) dx− (X(T ))2.

(21)

B. Transformation of the BVP system into Hamiltonian variables

To facilitate the phase space analysis of the BVP system, we will work with Hamiltonian

rather than Lagrangian variables. We use the Legendre transformation using configuration

variables (q1 = X, q2 = S) to obtain the corresponding conjugate momenta:

p1 =
∂L

∂q̇1
= −P,

p2 =
∂L

∂q̇2
= − Λ

2q2
.

(22)
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The Hamiltonian H = −PẊ − ΛṠ
2S

− L = −E is:

H(q1, p1, q2, p2) = − p21
2µ

− p22
2ϵ2µ

− V (q1, q2), (23)

where

V (q1, q2) = −hq
2
1

2
− q41

4
− 1

2
(ϵq2)

2 (h+ 3q21)−
µσ4

8(ϵq2)2
+

g

(α + 1)
√
α + 1 (2π)α/2 (ϵq2)α

− 3

4
(ϵq2)

4

(24)

is the potential energy.

The resulting Hamiltonian equations of motion are:

q̇1 =
∂H

∂p1
= −p1

µ
,

ṗ1 = −∂H
∂q1

= −q31 − h q1 − 3 (ϵq2)
2 q1,

q̇2 =
∂H

∂p2
= − p2

ϵ2µ
,

ṗ2 = −∂H
∂q2

=
µϵσ4

4(ϵq2)3
− gϵα

α + 1

1√
α + 1(2π)α/2

1

(ϵq2)α+1
− ϵ2 q2(3 q

2
1 + h)− 3ϵ4q32.

(25)

The Hamiltonian BVP system is obtained by appending the above system with the following

initial and final time conditions:

q1(0) = X(0),

q1(T ) = X(T ),

q2(0) = S(0),

q2(T ) = S(T ),

(26)

where the r.h.s. of the above equations are specified in Eqs. 21.

III. PHASE SPACE GEOMETRY OF THE HAMILTONIAN ODE

Since the Hamiltonian BVP system defined in Eqs. (25,26) is a reduced-order model of

the finite-horizon MFG, the equilibria of the Hamiltonian system of Eqs. 26 correspond to
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the ergodic equilibria, i.e., the solutions of infinite time MFG described by Eqs. 8. As a

consequence of the turnpike property, the solutions of BVP with T ≫ 1 spend most of their

time near the equilibria of Eqs. 26, except at the beginning and the end of the time-horizon.

In this section, we analyze the phase space geometry around equilibria of the Hamiltonian

ODE.

The linear stability of an equilibrium point X =
(
q1 0 q2 0

)⊺
of Eqs. 26 is determined

by the Jacobian matrix:

Jh|X =



0 − 1

µ
0 0

−3ϵ2 q2
2 − 3 q1

2 − h 0 −6 ϵ2 q1 q2 0

0 0 0 − 1

µϵ2

−6 ϵ2 q1 q2 0
α ϵ2 g

(ϵ q2)
α+2 (2 π)α/2

√
α + 1

− 9 ϵ4 q2
2 − 3σ4 µ

4 ϵ2 q24
− ϵ2 (3 q1

2 + h) 0


.

(27)

FIG. 1: Potential energy surface in (Left) saddle× saddle and (Right) saddle× center case.

We consider two types of equilibria, see Fig. 1:

1. Saddle×saddle type: We call an equilibrium X =
(
q1 0 q2 0

)⊺
to be of saddle×saddle

type if eigenvalues of Jh|X are of the form λ1,2 = ±γ1, λ3,4 = ±γ2, where γ1 and γ2

are both real. In this case, the pair (q1, q2) is a local maxima of the potential energy

function V (q1, q2) defined in Eq. 24.
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2. Saddle×center type: We call an equilibrium X =
(
q1 0 q2 0

)⊺
to be of saddle×center

type if eigenvalues of Jh|X are of the form λ1,2 = ±λ, λ3,4 = ±iν, where λ and ν are

both real. In this case, the pair (q1, q2) is a saddle point of the potential energy function

V (q1, q2) defined in Eq. 24.

A. Phase space geometry near a saddle× saddle type ergodic equilibrium

The phase space geometry near a saddle × saddle type equilibrium is governed by the

stable and unstable eigenvectors of the Jacobian matrix A ≜ Jh|X :

A =


0 −a 0 0

−b 0 0 0

0 0 0 −c

0 0 −d 0

 , (28)

where a, b, c, d are all positive real numbers. Suppose (u1, v1) and (u2, v2) are the eigenvectors

of A corresponding to eigenvalues λ1,2 = ±γ1 ≜ ±
√
ab and λ3,4 = ±γ2 ≜ ±

√
cd, respectively.

Let Z =
(
q1l p1l q2l p2l

)⊺
denote perturbation about X . Then, the linearized system Ż =

AZ can be written in the eigenvector basis (u1, v1, u2, v2) as follows:

Ẏ = DY =


γ1 0 0 0

0 −γ1 0 0

0 0 γ2 0

0 0 0 −γ2

Y , (29)

where Z = TY and D = T−1AT , with the eigenvector matrix

T =



√
a

a+ b

√
a

a+ b
0 0

−
√

b

a+ b

√
b

a+ b
0 0

0 0

√
c

c+ d

√
c

c+ d

0 0 −
√

d

c+ d

√
d

c+ d


. (30)
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Hence, linearization of the Hamiltonian system (Eqs.25) yields two decoupled systems in

the two eigenspaces. In the nonlinear system, the flow is governed by the two dimensional

stable manifold W s, and the two-dimensional unstable invariant manifold W u. Here, W s =

{Z ∈ R4| limt→∞ ϕt(Z) → X}, and W u = {Z ∈ R4| limt→−∞ ϕt(Z) → X}, and ϕt is the

time−t flowmap of Eqs. 25. The stable (resp. unstable) manifold is tangent to the stable

eigenspace (resp. unstable eigenspace). Fig. 2 shows the phase space near the equilibrium

projected on to the q1 − p1 and q2 − p2 planes.

FIG. 2: Phase portrait of the nonlinear Hamiltonian ODEs in the neighborhood of a saddle× saddle

equilibrium, projected on the (Left) q1 − p1 plane, and (Right) q2 − p2 plane. Also shown are stable (green)

and unstable (red) eigenvectors, and the corresponding invariant manifolds.

B. Phase space geometry near a saddle× center type ergodic equilibrium

-0.5 0 0.5
q1

3.6

3.8

4

q 2

-0.5 0 0.5
q1

3.6

3.8

4

q 2

-0.5 0 0.5
q1

3.6

3.8

4

q 2

FIG. 3: The contours of potential energy V (q1, q2) (black) separate the allowed (white) and forbidden

(green) regions in the configuration space (q1, q2) at total energy levels (left) E1 = Eeq, (middle) E2 > Eeq,

and (right) E3 > E2. The bottleneck around the equilibrium point (red circle) opens for E > Eeq

.
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In this section, we recall the main ideas involved in ‘tube dynamics’ [23, 30, 31], and

adapt the analysis to our system. Let Eeq denote the energy of saddle× center equilibrium

point X =
(
0 0 q2 0

)⊺
. Since, the autonomous Hamiltonian system of Eqns. (25) preserves

energy, each trajectory lies on an isoenergetic 3D manifold in the 4D phase space. For energy

levels E slightly above Eeq, a bottleneck exists near the equilibrium in the q1 − q2 plane, as

shown in Fig. 3. The trajectories can travel from left (i.e., q1 < 0) to the right (q1 > 0)

region by passing through this bottleneck. The Jacobian matrix (Eq. 27) evaluated at X is

of the form:

A =


0 −a 0 0

−b 0 0 0

0 0 0 −c

0 0 d 0

 , (31)

where a, b, c, d are all positive real numbers. As before, the linear dynamics of perturbation

Z =
(
q1l p1l q2l p2l

)⊺
around X are given by Ż = AZ. The quadratic Hamiltonian corre-

sponding to this linearized system is Hl(q1l, p1l, q2l, p2l) = 0.5(bq21l − ap21l − dq22l − cp22l). The

corresponding energy El = −Hl is an invariant of the linearized dynamics. The eigenvalues

of A are λ1,2 = ±
√
ab, and λ3,4 = ±i

√
cd. The eigenvector matrix can be taken to be

T =



√
a

a+ b

√
a

a+ b
0 0

−
√

b

a+ b

√
b

a+ b
0 0

0 0

√
c

c+ d
0

0 0 0 −
√

d

c+ d


. (32)

The coordinates Y =
(
ζ η ρ1 ρ2

)⊺
in the eigenvector basis are given by the relation

Z = TY , and the corresponding linear dynamics Ẏ = T−1ATY are:
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ζ̇ = λζ,

η̇ = −λη,

ρ̇1 = −νρ2,

ρ̇2 = νρ1.

(33)

The energy invariant in the new coordinates is El(ζ, η, ρ1, ρ2) = −a1ζη + a2(ρ
2
1 + ρ22), where

a1 =
2ab

a+ b
, and a2 =

0.5cd

c+ d
. Since the dynamics of (ζ, η) and (ρ1, ρ2) in Eqs. 33 are

decoupled, the system also possesses two additional invariants, namely ζη and ρ21 + ρ22.

Consider the region R defined by two constraints El = ϵ1 (fixed energy), and |ζ+ η| ≤ C,

where both ϵ1 and C are positive. Rewriting the energy equation as

a1
4
(ζ − η)2 + a2(ρ

2
1 + ρ22) = ϵ1 +

a1
4
(ζ + η)2, (34)

we note that for ζ + η fixed, Eq. 34 describes a topological 2-sphere (geometrically an

ellipsoid) in the 4D phase space. Hence R has the topology S2 × I.

Fig. 4 shows the projection of the R on the ζ− η and ρ1− ρ2 planes. Each point (ζ, η) in

this projection corresponds to a circle in the (ρ1, ρ2) plane, with radius ρ =
√
ρ21 + ρ22 given

by Eq. 34. There exists a periodic orbit (in the linear system), and it projects to the origin

in the ζ − η plane. The ζ − η projection is bounded by the two dashed lines ζ + η = −C

and ζ + η = C, connecting the two boundary hyperbolas that correspond to ζη = − ϵ1
a1

(and hence, ρ = 0). The two 2-spheres in R corresponding to the boundary lines are called

‘bounding spheres’ since they form the 2D boundary of the 3D region R in the 4D phase

space. Each trajectory (except the periodic orbit) appears as a hyperbola (ζη = constant)

in this projection, since ζη is an invariant of motion as mentioned above. The following list

relates the various types of trajectories in R and their ζ − η plane projections:

1. ηζ = 0 (axes): These are cylinders of radius ρ∗ =

√
ϵ1
a2

in R, corresponding to tra-

jectories asymptotic to the periodic orbit in positive (η = 0) or negative (ζ = 0)

time.

2. ηζ < 0 (hyperbolas in second/fourth quadrants): These are trajectories lying on cylin-
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FIG. 4: Phase space geometry in the saddle× center case. Projection of region R and the trajectories of

the linearized Hamiltonian equations on the (left) ζ − η plane, and (right) ρ1 − ρ2 plane. The periodic orbit

(purple) projects to the origin on the former, and to a circle of radius ρ∗ on the latter. All other trajectories

travel on cylinders, and their projections are hyperbolas and circles on the two planes, respectively. The

trajectories on cylinders with radius ρ < ρ∗ (blue) transit between the bounding spheres, while those on

cylinders with ρ > ρ∗ (yellow) return back to the originating bounding spheres. Trajectories on the red and

green cylinders are asymptotic to the periodic orbit in negative and positive time, respectively.

ders with ρ < ρ∗, and go from one bounding sphere to another.

3. ηζ > 0 (hyperbolas in first/third quadrants): These are trajectories lying on cylinders

with ρ > ρ∗. These cylinders begin and end at the same bounding sphere.

The above discussion is based on linear dynamics in the neighborhood of the equilibrium.

The main takeaway is that only those trajectories that lie on cylinders with ρ < ρ∗, i.e.

inside the tubes built up of orbits asymptotic to the periodic orbit (of the linear system),

can transit from one boundary sphere to another.

For sufficiently small positive values of excess energy ϵ1 = E − Eeq, a family of periodic

orbits of the nonlinear Hamiltonian ODE (Eqs. 25) is guaranteed to exist around X [31]. In

this case, the above described qualitative picture of phase space near the equilibrium persists

in the nonlinear system. For the periodic orbit of the nonlinear system P(τ) : [0, 1] → R4
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(satisfying P(0) = P(1)), there exist 2D stable (W s
p.o.) and unstable (W u

p.o.) manifolds:

W s
p.o. = {Z ∈ R4| lim

t→∞
ϕt(Z) → P}, (35)

W u
p.o. = {Z ∈ R4| lim

t→−∞
ϕt(Z) → P}. (36)

These manifolds are locally diffeomorphic to cylinders. Only those trajectories that are inside

these tube-like stable/unstable manifolds can transit, see Fig. 5. This is a global result since

these 2D invariant manifolds are codimension-1 in the 3D phase space (of fixed energy), and

hence trajectories cannot cross the surface of these tubes. For details on computation of

periodic orbits and their invariant manifolds, we refer the reader to [31].

FIG. 5: The 3D phase space geometry of the nonlinear Hamiltonian ODEs (restricted to a fixed energy

level) near a saddle× center equilibrium point. The energy level E is slightly above that of the equilibrium.

The tube-shaped stable (green) and unstable (red) manifolds of the periodic orbit form barriers to

transport in this system. Analogous to the linear picture of Fig. 4, the trajectories starting inside (blue) the

stable tube transit across, while those starting outside (yellow) the tube do not. The transiting trajectories

that stay (approximately) on the tubes (purple) are referred to as ‘asymptotic’ in the main text.
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IV. BIFURCATIONS IN THE HAMILTONIAN BVP : PHASE SPACE ANALYSIS

AND NUMERICAL CONTINUATION

In this section, we discuss the numerical solutions of the Hamiltonian BVP (Eqs. 25, 26)

as the time horizon T is varied, and interpret the solution structure using the geometry of

the phase space for the two cases discussed in the previous section. In both cases, we use

the following initial and final conditions:

q1(0) = −10, q2(0) = 4.5,

q1(T ) = 10, q2(T ) = 4.5.
(37)

The solutions are computed using a combination of the boundary value problem solver

BVP4c [32], and the Computational Continuation Core (COCO) [33] in Matlab.

(a) (b)

FIG. 6: Various solutions of the Hamiltonian BVP in the saddle× saddle equilibrium case shown in the

(a) q1 − p1, and (b) q2 − p2 phase planes, along with the projections of the initial and final conditions. Also

shown are the projections of the stable (green) and unstable (red) manifolds of the equilibrium. As T is

increased, the trajectories get closer to the invariant manifolds.

A. Hamiltonian BVP with a saddle× saddle type ergodic equilibrium

We pick parameters values σ = 1, µ = 2, g = 4, h = 0, α = 1, and ϵ = 0.05, in which

case the system has a unique equilibrium X = (q1 p1 q2 p2)
⊺ = (0 0 12.21 0)⊺. X is a
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FIG. 7: The energy (E) v/s time-horizon (T) diagram for the saddle× saddle case. As T → ∞, the

energy approaches that of the equilibrium.

saddle × saddle type equilibrium, with the eigenvector matrix of the form T given by Eq.

30, where a = 0.5, b = 1.1186, c = 200 and d = 229.74.

In Fig. 6, several solutions of the BVP are shown via projections onto the q1 − p1 and

q2 − p2 planes, along with the stable and unstable manifolds of the equilibrium. There

is a unique trajectory for each value of T , determined by the geometry of the stable and

unstable manifolds. With increasing T , the trajectories get progressively closer to these

invariant manifolds. In the limit T → ∞, the solutions converge to the invariant manifolds,

while the energy E approaches that of the equilibrium Eeq, as shown in Fig. 7. The limiting

behavior is exactly the ergodic regime of the MFG solution. Overall, the solutions of the

coupled BVP with a saddle× saddle fixed point behave similarly to those of the uncoupled

case considered in [21].

B. Hamiltonian BVP with a saddle× center type ergodic equilibrium

In this case, we pick the parameters σ = 1, µ = 2, g = 4, α = 3, h = 0 and ϵ = 0.05,

which results in a saddle× center type equilbrium point X = (q1 p1 q2 p2)
⊺ = (0 0 3.81 0)⊺.

The Jacobian matrix A evaluated at X is of the form given in Eq. 31, with a = 0.5, b =

0.109, c = 200 and d = 0.946, and eigenvalues ±0.233 and ±13.8i. The system possesses

another equilibrium point (with q2 ≈ 100) that is irrelevant for the chosen initial and final

boundary conditions, so we focus our discussion on the region around X .
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FIG. 8: Projection of region R and a solution of the linearized BVP equations on the (left) ζ − η plane,

and (right) ρ1 − ρ2 plane. The BVP solutions (blue) must transit from the line of initial conditions (dash)

to the line of final conditions (dash-dot) in the ζ − η plane, and hence lie on cylinders with ρ < ρ∗.

Similar to the discussion in Sec. III B, we first analyze the linearized system by restricting

to an isoenergetic 3D region R with El = ϵ1. Using the transformation matrix T (Eq. 32)

and the relation Z = TY , we obtain q1 = 0.906(ζ + η). Hence, the set of initial and final

conditions defined by q1(0) = −10 and q1(T ) = 10 projects on the ζ − η plane parallel to

the boundary lines, see Fig. 8 (left). Similarly, the other set of initial and final conditions

defined by q2(0) = q2(T ) = 4.5 is shown in the ρ1 − ρ2 plane in Fig. 8(right).

As discussed in the Sec. III B, the only points that transit from the initial to the final

condition line in the ζ − η plane are those with ρ < ρ∗. Simultaneously, the trajectory has

to begin and end at the line of initial and final conditions in the ρ1 − ρ2 plane.

The corresponding picture in the 3D phase space of the nonlinear system is shown in

Fig. 9, where we fix energy slightly above that of the equilibrium. The two planes of initial

conditions q1 = −10, and q2 = 4.5 intersect the stable (solid) tube in topological discs. The

intersection of these two discs yields a line segment of feasible initial conditions for each level

of energy. Similarly, the final conditions yield the feasible line segment upon intersection

with the unstable tube. Each BVP solution with the prescribed energy level must begin on

the starting line segment, and end on the final line segment in this 3D phase space. Each

solution can be divided into three phases: 1). The arrival phase 0 ≤ t ≤ ta, during which
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FIG. 9: The 3D phase space geometry of the nonlinear Hamiltonian BVP (restricted to a fixed energy

level) near a saddle× center equilibrium point, showing the invariant manifolds (tubes) of the periodic

orbit, and the lines of initial/final conditions. Each BVP solution starts at the line of initial conditions,

travels inside/on the stable tube (green), and then switches to the unstable tube (red), ending on the line

of final conditions.

it travels from the initial condition to the neighborhood of the equilibrium, 2). The ergodic

phase ta ≤ t ≤ ta + τerg during which the trajectory stays close to the equilibrium , and 3).

The departure phase ta + τerg ≤ t ≤ ta + τerg + td ≈ T , corresponding to the travel from the

neighborhood of the equilibrium to the final condition.

The bifurcation diagram for this system is shown in Fig. 10. The diagram contains

several branches, and the system exhibits multiplicity of solutions (at fixed T ) for T > 5.5.

Along the solution branches B2 through B11, the energy increases monotonically with T .

Each solution on these branches is of asymptotic type, i.e. it travels (approximately) ‘on’

the tubes rather that inside them. Hence, the time period of one rotation around the tubes

along the trajectory (in the ergodic phase) is approximately equal to that of the periodic orbit

(tp), which in turn is fixed by the value of E. The nth bifurcation point, from which the Bn+1

branch originates, corresponds to the lowest energy level yielding n half-rotations during the

ergodic phase of the trajectory, i.e., τerg = 0.5ntp. Along Bn+1, the time period tp of the

periodic orbit as well as the tube radius increase with E. Most of the concomitant increase
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FIG. 10: A partial energy (E) v/s time-horizon (T) diagram for the saddle× center case, where solutions

on branch Bn have n intersections with the p2 = 0 plane, and undergo n− 1 half-rotations during the

ergodic phase. The B1 branch is similar to the solution branch of the saddle× saddle case. The trajectories

on branches B2 through B11 consist of asymptotic trajectories travelling (nearly) on the tubes. The

trajectories lying on B1 as well those on the segments connecting different branches, travel inside the tubes.

in T is due to increase in τerg, and it is such that the rotation remains fixed, i.e.,
τerg
tp

= 0.5n,

for all points on that branch. Hence, all solutions on a single branch Bn(2 ≤ n ≤ 11) have

the same topology. For a fixed time-horizon T > 5.5, a solution can travel on a bigger tube

(higher E) and do fewer rotations, or on smaller tube(s) (lower E) with more rotations.

The topological origin of different branches is further evident in Fig. 11. This figure shows

three trajectories from the B1, B2 and B3 branches along with the lines of initial and final

conditions. The arrival and departure phase of all trajectories correspond approximately to

the segments connecting the initial condition line to the p2 = 0 plane, and the segments

from that plane to the line of final conditions, respectively. The trajectory on B1 has only

1 intersection with the p2 = 0 plane in the ergodic phase, while that on B2 completes half a

rotation, resulting in two intersections, and the one on B3 completes a full rotation resulting

in three intersections. The same three trajectories are shown in the 3D phase space in Fig.

12. Our attempts at numerical continuation of the branch B2 failed at an energy level very
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(a) (b)

FIG. 11: Trajectories from B1 (red), B2(yellow) and B3(blue) branches shown in the phase space, along

with the lines of initial (purple) and final (cyan) conditions, as well as the plane p2 = 0. The arrival (dash),

and departure (dot) phases of all three trajectories are similar. In the ergodic phase (bold) the B1

trajectory has no rotations, the B1 trajectory completes half a rotation while the B2 trajectory completes a

full rotation.

close to the value above which a periodic orbit could not be found in the nonlinear system.

Although we did not continue upto failure when computing branches B3 through B11, we

expect a similar conclusion to hold in those cases too.

The B1 branch is similar to the only solution branch found in the saddle × saddle case

in the previous section. As T is increased, trajectories get progressively closer to the stable

and unstable manifolds of the equilibrium point, see Fig. 13. However, these 1D invariant

manifolds of the equilibrium point do not intersect the line of final condition, as shown in

the inset of Fig. 13. This implies a lower bound on the radius of cylinders on which the BVP

trajectories can lie in order to satisfy the final condition. The trajectory corresponding to

T ≈ 5.32 on that branch hits this lower limit on the cylinder size, hence the branch terminates

at this point, labelled P12 on Fig. 10. Although we couldn’t converge onto solutions between

P12 and the lowest energy point on B2, we conjecture that they behave analogous to those on

the segment starting at P23 and ending on lowest energy solution on B3 branch. These latter

trajectories have same topology as B3 but travel inside the tubes (rather than on them as

is the case on B3). Moving to right (increasing T ) along that segment, the tube size shrinks

with E, while the trajectories progressively get closer to the tubes, eventually resulting in
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(a) (b)

(c) (d)

FIG. 12: The three trajectories of Fig. 11 along with the stable and unstable tubes at the energy level of

each trajectory. The (a) B1, (b) B2, and (c) B3 trajectories complete zero, one-half and one rotations in

the ergodic phase, respectively. (d) For comparison, a trajectory from the B11 branch, completing five

rotations in the ergodic phase. All trajectories except the one on the B1 branch travel on the tubes.

the origin of branch B3. Other segments that connect the various branches B2 through B11

also behave similarly.

V. BIFURCATIONS IN THE MFG PDE, AND COMPARISON WITH THE HAMIL-

TONIAN BVP SOLUTIONS

In this section, we present some numerical solutions of the MFG Eqs. (6,7), and compare

them with the solutions of the Hamiltonian BVP Eqs. (25) discussed in the previous section,
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FIG. 13: 3D phase portrait showing several BVP solutions on the B1 branch, along with the stable

(green) and unstable (red) manifolds of the equilibrium. As the time-horizon T is increased, the distance

between trajectories and the manifolds asymptotes down to a finite value (at T ≈ 5.32, labeled P12 in Fig.

10). (Inset) The unstable manifold does not intersect the line of final conditions, hence the the radius of

cylinders of the BVP trajectories cannot become arbitrarily small.

focusing on the saddle× center case.

We note that the boundary conditions of the Hamiltonian BVP given by Eqs. (26)

prescribe the initial and final density, while in the standard MFG formulation, initial density

and final value function are prescribed. We take the MFG initial and final conditions to

match those used in the BVP, and use:

m(x, 0) = mIC(x) ≜
1√

2πϵ2S2(0)
exp

(
−(x−X(0))2

2ϵ2S2(0)

)
,

m(x, T ) = mFC(x) ≜
1√

2πϵ2S2(T )
exp

(
−(x−X(T ))2

2ϵ2S2(T )

)
,

(38)

where X(0) = −10, X(T ) = 10, S(0) = S(T ) = 4.5 and ϵ = 0.05, as used in the Hamiltonian

BVP problem.

The MFGs with prescribed initial and final density have been referred to as ‘MFG planning

problems’ [34, 35] in the literature. The chosen final condition on density can be used to

approximate the final value function, as described in [36]. The idea is to employ the final value
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(a) (b)

(c) (d)

FIG. 14: The density m(x, t) computed by solving the (a) Hamiltonian BVP, and (b) PDE equations for

the same set of system parameters. (c) The BVP and PDE solutions in the phase space, showing that both

trajectories complete two rotations in the ergodic phase. (d) The density at final time (mPDE) computed

using the PDE equations, and the prescribed final density (mFC).

function condition u(T, x) =
1

ϵp
(m(x, T ) −mFC(x)), for ϵp ≪ 1. With this approximation,

the MFG PDE is reduced to a form which can be solved using different variants of Picard-

Newton type algorithms [37]. We employ one such variant to solve the problem at hand,

and relegate its details to the Appendix.

In order to solve the PDE system, we first pick system parameters (and initial guesses)

corresponding to the B5 branch of Fig. 10, in which case the BVP solution undergoes two

full rotations in the ergodic phase. Figs. 14(a,b) show the density evolution obtained from

solving the BVP and PDE problems. In both cases, two peaks of the density during the

evolution are evident, hinting at the topological similarity between the PDE and BVP solu-
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(a) (b)

(c) (d)

FIG. 15: Phase space portrait showing BVP and PDE solutions with (a) One, (b) one and a half, (c)

three, and (d) five rotations in the ergodic phase, respectively. Each pair of trajectories (BVP and PDE)

are computed using the same set of system parameters.

tions. To confirm this, we plot the two solutions in the phase space. To obtain phase space

quantities from the PDE solution (m(x, t), u(x, t)), we employ the definitions of (X,S, P,Λ)

given in Sec. II A. Finally, we use the Legendre transformations of Sec. II B to obtain

(q1(t), p1(t), q2(t), p2(t)). The phase space plots shown in Fig. 14(c) confirm that the PDE

and BVP solutions indeed have the same topology, i.e., they both undergo two full rotations

in the ergodic phase. We observed similar agreement between the PDE and the BVP solu-

tions for the other solutions branches, see Fig. 15. Fig. 14(d) shows that the PDE solution

satisfies the final density condition.
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VI. DISCUSSION AND CONCLUSIONS

In this work, we have used a combination of reduced-order modeling and phase space

analysis to identify and explain the topological nature of multiple solution branches of a

variational non-monotonic finite-horizon MFG. This analysis rests on two key ideas:

1. The turnpike property of the MFG which allows the use of an ansatz borrowed from

nonlinear Schrodinger equations to yield a 4D Hamiltonian BVP when the solution

has solitonic form, and

2. The organization of phase space in 4D Hamiltonian ODEs near a saddle×center equi-

librium by invariant manifolds of the hyperbolic periodic orbit around that equilibrium

point.

The phase space geometry near the equilibrium point of the Hamiltonian ODE is the key

to determining the corresponding BVP trajectories. We first confirm that there is a unique

branch of solutions in the saddle × saddle case with E monotonically decreasing with in-

creasing T , reminiscent of the uncoupled case treated in [21].

In the saddle × center case that is the focus of this work, the trajectories in the system

linearized around the equilibrium can be classified as transit or non-transit, depending upon

whether they are inside or outside the cylindrical invariant manifolds (tubes) of the periodic

orbit, respectively. Due to hyperbolic nature of the periodic orbit, the conclusions from the

linearized system persist in the nonlinear regime. This classification provides a characteriza-

tion of initial and final conditions that can be joined via BVP trajectories for a given energy

level E. In addition to a branch similar to that of the saddle × saddle case, several new

branches, each with a fixed non-trivial topology, are identified. On these branches, the en-

ergy increases with T while trajectories travel on the tubes. The topology is unambiguously

determined by counting the number of intersections of the trajectory with a surface of section

in the phase space, and equivalently, the number of half-rotations around the tube during

the ergodic phase. The system parameters identified via BVP analysis are used while solving

the full order MFG PDEs. The solutions obtained from the PDEs have the same topology

as the corresponding BVP solutions, hence validating the model reduction methodology and

the related phase space analysis.

29



This work adds to the small but growing corpus of results [19, 21, 38], on the use of

exact solutions, reduced-order modeling and dynamical systems analysis for understanding

the behavior mean field games in various parametric regimes. It also demonstrates the role

of geometry of invariant manifolds of periodic orbits in determining solutions of BVPs with

a forward-backward nature. This could be of independent interest in problems related to

optimal transport [39, 40] and mean field control [41, 42].

The results obtained here can be generalized in various directions. The tube dynamics

based analysis described in this work can be generalized to (2n+2)D Hamiltonian ROMs

with a rank-1 saddle (i.e., with a saddle×center × center × center︸ ︷︷ ︸
n times

type equilibrium point)

for n > 1. From the MFG viewpoint, this will allow the analysis of ROMs with more than

two degrees of freedom, e.g., those with the controlled dynamics restricted to first n + 1

moments of the distribution for n > 1.

Our framework can potentially also be used to construct homoclinic, heteroclinic, and

‘brake orbits’ in certain classes of MFG systems [43]. More generally, by considering reduced-

order model regimes with multiple coexisting saddle × center equilibrium points, the con-

figurations space (q1, q2) can be divided into various realms, with each pair of neighboring

realms separated by a bottleneck around a saddle × center equilibrium point. Using prior

results on symbolic dynamics in such systems [24], one could construct BVP solutions with

arbitrary itineraries, i.e., trajectories that visit different realms in any specified order. Some

of these extensions will be taken up in future work.
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Appendix: Numerical scheme for solving the MFG PDE system

Consider the MFG system of Eqs.(6,7) :

∂tu(x, t)−
1

2µ
(∂xu(x, t))

2 +
σ2

2
∂xxu(x, t) = V̄ [m](x, t),

∂tm(x, t)− 1

µ
∂x(m(x, t)∂xu(x, t))−

σ2

2
∂xxm(x, t) = 0,

(A.1)

with prescribed initial density m(x, 0) = mIC(x), and the final value function condition

u(T, x) =
1

ϵp
(m(x, T )−mFC(x)).

We use finite-difference discretization in space and time to solve the above problem in

the space-time domain [−L/2, L/2] × [0, T ], where we pick L to be large enough to avoid

any boundary effects. The spatial interval is divided into Nx uniform subintervals of size

δx = L/Nx, and the time interval [0, T ] is divided into Nt time steps of size δt = T/Nt. With

this discretization, we use the notation Mn
i ≜ m(xi, tn), and Un

i ≜ u(xi, tn), where xi is

the ith spatial grid point, and tn is the nth temporal grid point. Also, Mn ≜ Mn
i=0:Nx

, and

Un ≜ Un
i=0:Nx

. For all points other than those on the boundary of the spatial domain, we

use central difference approximation for spatial derivatives. The forward difference scheme

is used for time discretization. For Z =M, or Z = U , finite difference operators are defined

as follows:

DxZ
n
i =

Zn
i+1 − Zn

i−1

2δx
,

∆xZ
n
i =

Zn
i+1 − 2Zn

i + Zn
i−1

δ2x
,

DtZ
n
i =

Zn+1
i − Zn

i

δt
.

(A.2)

Free boundary conditions are applied to the left (i = 0) and right (i = Nx) bound-

ary points, and we employ forward difference and backward difference scheme for spatial

derivatives at the two locations, respectively.
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The discretized versions of Eqs.(A.1) are:

−DtU
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2
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n
i +

1

2µ
(DxU

n
i )

2 = −f(Mn+1
i )− U0(xi),

DtM
n
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2
∆xM

n+1
i − 1

µ

(
(DxM

n+1
i )(DxU

n
i ) +Mn+1

i ∆xU
n
i

)
= 0,

(A.3)

with prescribed initial density M0 = mIC(x0:Nx), and final value function UNt =
1

ϵp
(MNt −

mFC(x0:Nx)). Following [37], the forward-backward discretized MFG system of Eqs.(A.3)

is solved using a Picard-type iteration. Given the density M̃[k] ≜ M0:Nt
0:Nx

at end of kth

iteration, the value function U [k+1] ≜ U0:Nt
0:Nx

is obtained by solving the discretized nonlinear

HJB repeatedly, starting at final time T , and marching backward in time up to t = 0. At

the nth time step, the system of equations to be solved for Un is given by:

F1(U
n
i ) = −U

n+1
i − Un

i

δt
− σ2

2
∆xU

n
i +

1

2µ
(DxU

n
i )

2 + f(Mn+1
i ) + U0(xi) = 0, (A.4)

for i = 0 : Nx. We use the Newton-Raphson method to solve this system.

Using U [k+1], the density M[k+1] is obtained by solving the linear discretized FP equation

repeatedly, starting at t = 0, and marching forward in time to t = T . The linear system to

be solved at the nth time step for Mn+1 is:

AFPMn+1 =Mn/δt, AFP
q,i =



1
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δ2x
− 1
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− σ2

2δ2x
− 1
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DxU

n
i , i = q + 1

0, otherwise.

. (A.5)

At the end of (k + 1)th Picard iteration, we use damping to obtain the updated values of

value function Ũ [k+1] and density M̃[k+1]. The Picard iterations are continued till tolerance

is met, see Algorithm 1 for details.
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TABLE I: Notation used in the pseudo-code for solving the MFG PDEs

Notation Description
k Picard iteration index.

kmax Maximum number of Picard iterations allowed
n Time index.
Tol Tolerance for Picard iterations.
Nx Number of spatial subintervals.
Nt Number of time steps.
δ Damping coefficient for Picard iteration.
δt Time stepsize.
δx Length of the each spatial subinterval.

M̃[k] ∈ R(Nt+1)×(Nx+1) Density at end of kth Picard iteration.

Ũ [k] ∈ R(Nt+1)×(Nx+1) Value function at end of kth Picard iteration.
U [k+1] ∈ R(Nt+1)×(Nx+1) Value function obtained from solving the HJB during

(k + 1)th Picard iteration.
M[k+1] ∈ R(Nt+1)×(Nx+1) Density obtained from solving the FP during (k + 1)th

Picard iteration.

Algorithm 1 Pseudo-code for solving the MFG PDEs

Make initial guesses for the density M̃[0] and the value function Ũ [0].
isconverged = 0
for k = 0 to kmax do ▷ Picard iteration

M0:Nt = M̃[k]

Set final time value function UNt =
1

ϵp
(MNt −mFC(x0:Nx))

for n = Nt − 1 down to 0 do ▷ HJB time marching
Solve Eq. A.4 using Newton-Raphson to get Un

end for
U [k+1] = U0:Nt

Set initial time density M0 = mIC(x0:Nx)
for n = 0 to Nt − 1 do ▷ FP time marching

Solve the linear system of Eq. (A.5) to get Mn+1

end for
M[k+1] =M0:Nt

Update:
M̃[k+1] = δ(k)M̃[k] + (1− δ(k))M[k+1]

Ũ [k+1] = δ(k)Ũ [k] + (1− δ(k))U (k+1)

if ||Ũ [k+1]) − Ũ [k]|| < Tol And ||M̃[k+1] − M̃[k]|| < Tol then
isconverged = 1
break

end if
end for
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1. Convergence

For solving the MFG PDEs for the two rotation case discussed in Sec. V, we used the

following parameter values for the algorithm: L = 40, Nx = 500, Nt = 500, T = 9.5, δ = 0.5,

kmax = 1000, ϵp = 0.01, and Tol = 10−6. This yields δt = 0.019 and δx = 0.08. The

convergence behavior of Algorithm 1 for this case is shown in Fig. 16. It is evident that the

algorithm converges rapidly. Similar performance was observed for solutions with different

topologies (e.g., those shown in Fig. 15).
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FIG. 16: Decay of the two error terms in the Picard iteration Algorithm 1 to solve the MFG PDEs for

the case shown in Fig. 14.
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