Skip to main content

Cerebral Blood Flow Measurement for Neurological Assessments: Functional Transcranial Doppler Ultrasound

  • Reference work entry
  • First Online:

Abstract

Transcranial Doppler (TCD) is a special type of ultrasound developed to measure cerebral blood flow (CBF) and subsequently shown to be valuable in an increasingly larger number of clinical applications. Physically, TCD operates in the same way and is as safe as ultrasound imaging used during pregnancy. Changes in CBF in response to controlled stimuli have been shown to be valuable indicators of a variety of pathological conditions. In addition to measuring CBF, TCD can detect the passage of emboli in the bloodstream due to a stark difference in acoustic properties when emboli pass through the ultrasound beam. This unmistakable change in ultrasound signal echo between emboli and blood is due to density and acoustic impedance differences. The TCD signal is processed in real-time for visual display and measurement of cerebral blood flow velocities (CBFV). Two scanning techniques, the free-hand and continuous monitoring techniques, are the two primary methods for performing TCD. The free-hand technique is suitable for short-term monitoring (30 min or less) but is not effective for continuous monitoring due to operator fatigue and inconsistent transducer placement. The second method, continuous TCD monitoring, requires a fixation apparatus to hold the Doppler probe(s) in a static location at the scalp insonation site. Due to its low cost, real-time measurement capability, and easy portability, TCD has remained a valuable imaging tool when compared to more costly and stationary modalities. More recently, TCD has been used in conjunction with cerebral function tests (functional TCD, or fTCD) as a proxy for neuronal activity for indication in an ever-increasing number of brain studies. The future of TCD and fTCD as biomarkers for neurological assessment is exciting indeed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACA:

Anterior cerebral artery

AD:

Alzheimer’s disease

BCA:

Basal cerebral artery

BH:

Breath holding

CBF:

Cerebral blood flow

CBFV:

Cerebral blood flow velocities

CVR:

Cerebrovascular reactivity

fTCD:

Functional transcranial Doppler

ICA:

Internal carotid artery

MCA:

Middle cerebral artery

MCI:

Mild cognitive impairment

MHz:

Megahertz (one million cycles/s)

mW:

milliWatts

mW/cm2 :

milliWatts per centimeter squared (acoustic intensity)

PCA:

Posterior cerebral artery

PI:

Pulsatility index

RI:

Resistivity index

SAH:

Subarachnoid hemorrhage

TBI:

Traumatic brain injury

TCD:

Transcranial Doppler

References

  • Aaslid R. Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke. 1987;18(4):771–5.

    Article  CAS  PubMed  Google Scholar 

  • Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.

    Article  CAS  PubMed  Google Scholar 

  • Adams R, McKie V, Nichols FC, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med. 1992;326(9):605–10.

    Article  CAS  PubMed  Google Scholar 

  • Alexandrov AV, Neumyer MM. Intracranial cerebrovascular ultrasound examination techniques. In: Alexandrov AV, editor. Cerebrovascular ultrasound in stroke prevention and treatment. New York: Futura/Blackwell; 2004. p. 17–32. ch. 2.

    Chapter  Google Scholar 

  • Alsalaheen BA, Mucha A, Morris LO, et al. Vestibular rehabilitation for dizziness and balance disorders after concussion. J Neurol Phys Ther. 2010;34(2):87–93.

    Article  PubMed  Google Scholar 

  • Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2015;11(3):332–84.

    Article  Google Scholar 

  • Alzheimer’s Disease International. Dementia and risk reduction: an analysis of protective and modifiable factors., World Alzheimer’s Report, 2014.

    Google Scholar 

  • American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of a transcranial Doppler ultrasound examination for adults and children. J Ultrasound Med. 2012;31(9):1489–500.

    Google Scholar 

  • Arboix A, Alió J. Acute cardioembolic cerebral infarction: answers to clinical questions. Curr Cardiol Rev. 2012;8(1):54–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arch A, Sheth K. Malignant cerebral edema after large anterior circulation infarction: a review. Curr Treat Options Cardiovasc Med. 2014;16(1):275.

    Article  PubMed  Google Scholar 

  • Asil T, Uzunca I, Utku U, Berberoglu U. Monitoring of increased intracranial pressure resulting from cerebral edema with transcranial Doppler sonography in patients with middle cerebral artery infarction. J Ultrasound Med. 2003;22(10):1049–53.

    PubMed  Google Scholar 

  • Centers for Disease Control and Prevention. Traumatic brain injury in the united states emergency department visits, hospitalizations and deaths. National Center for Injury Prevention and Control, Atlanta, GA, 2010.

    Google Scholar 

  • de Havenon A, Moore A, Sultan-Qurraie A, Majersik JJ, Stoddard G, Tirschwell D. Ischemic stroke patients with active malignancy or extracardiac shunts are more likely to have a right-to-left shunt found by TCD than echocardiogram. Transl Stroke Res. 2015;6(5):361–4.

    Article  PubMed  Google Scholar 

  • Deppe M, Ringelstein EB, Knecht S. The investigation of functional brain lateralization by transcranial Doppler sonography. Neuroimage. 2004;21(3):1124–46.

    Article  PubMed  Google Scholar 

  • Dewitt DS, Prough DS. Traumatic cerebral vascular injury: the effects of concussive brain injury on cerebral vasculature. J Neurotrauma. 2003;20(9):795–825.

    Article  PubMed  Google Scholar 

  • Fierstra J, Sobczyk O, Battisti-Charbonney A, et al. Measuring cerebrovascular reactivity: what stimulus to use. J Physiol. 2013;591(23):5809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulton JF. Observations upon the vascularity of the human occipital lobe during visual activity. Brain. 1928;51(3):310–20.

    Article  Google Scholar 

  • Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med. 1974;67(6 Pt 1):447–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greve DN, Van der Haegen L, Cai Q, Stufflebeam S, Sabuncu MR, Fischl B, Brysbaert M. A surface-based analysis of language lateralization and cortical asymmetry. J Cogn Neurosci. 2013;25(9):1477–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hage B, Alwatban M, Barney E, Mills M, Dodd M, Truemper E, Bashford G. Functional transcranial doppler and cerebral lateralization during two visuospatial tasks. Proceedings of the 2015 International Ultrasonics Symposium (2015).

    Google Scholar 

  • Heiss W-D, Podreka I. Assessment of pharmacological effects on cerebral blood flow. Eur Neurol. 1978;17 Suppl 1:135–43.

    PubMed  Google Scholar 

  • Hirsch J, Jacobs L, Andropoulos D. Protecting the infant brain during cardiac surgery: a systematic review. Ann Thorac Surg. 2012;94(4):1365–73.

    Article  PubMed Central  PubMed  Google Scholar 

  • Honaker J, Truemper E, Bashford G, et al. Exploring cerebral hemodynamics with transcranial Doppler during computerized dynamic posturography. Proceedings of the 38th Annual Meeting of the Association for Research in Otolaryngology. 2015.

    Google Scholar 

  • Huber P, Handa J. Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries. Angiographic determination in man. Invest Radiol. 1967;2(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  • Hurschler MA, Liem F, Oechslin M, Stämpfli P, Meyer M. fMRI reveals lateralized pattern of brain activity modulated by the metrics of stimuli during auditory rhyme processing. Brain Lang. 2015;147:41–50.

    Article  PubMed  Google Scholar 

  • Itoh Y, Suzuki N. Control of brain capillary blood flow. J Cereb Blood Flow Metab. 2012;32(7):1167–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katsanos AH, Spence JD, Bogiatzi C, Parissis J, Giannopoulos S, Frogoudaki A, Safouris A, Voumvourakis K, Tsivgoulis G. Recurrent stroke and patent foramen ovale: a systematic review and meta-analysis. Stroke. 2014;45(11):3352–9.

    Article  CAS  PubMed  Google Scholar 

  • Knecht S, Henningsen H, Deppe M, Huber T, Ebner A, Ringelstein E-B. Successive activation of both cerebral hemispheres during cued word generation. Neuroreport. 1996;7(3):820–4.

    Article  CAS  PubMed  Google Scholar 

  • Knecht S, Deppe M, Ebner A, Henningsen H, Huber T, Jokeit H, Ringelstein E-B. Noninvasive determination of language lateralization by functional transcranial Doppler sonography: a comparison with the Wada test. Stroke. 1998;29(1):82–6.

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Alexandrov AV. Vasospasm surveillance with transcranial Doppler sonography in subarachnoid hemorrhage. J Ultrasound Med. 2015;34(8):1345–50.

    Article  PubMed  Google Scholar 

  • Kuschinsky W. Coupling of function, metabolism, and blood flow in the brain. Neurosurg Rev. 1991;14(3):163–8.

    Article  CAS  PubMed  Google Scholar 

  • Laske C, Sohrabi H, Frost S, et al. Innovative diagnostic tools for early detection of Alzheimer’s disease. Alzheimers Dement. 2015;11(5):561–78.

    Article  PubMed  Google Scholar 

  • Len TK, Neary JP, Asmundson GJ, Goodman DG, et al. Cerebrovascular reactivity impairment after sport-induced concussion. Med Sci Sports Exerc. 2011;43(12):2241–8.

    Article  PubMed  Google Scholar 

  • Marar M, McIlvain NM, Fields SK, Comstock RD. Epidemiology of concussions among united states high school athletes in 20 sports. Am J Sports Med. 2012;40(4):747–55.

    Article  PubMed  Google Scholar 

  • Markus HS, Harrison MJ. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke. 1992;23(5):668–73.

    Article  CAS  PubMed  Google Scholar 

  • Marshall S, Nyquist P, Ziai W. The role of transcranial Doppler ultrasonography in the diagnosis and management of vasospasm after aneurysmal subaachnoid hemorrhage. Neurosurg Clin N Am. 2010;21(2):291–303.

    Article  PubMed  Google Scholar 

  • Marxen M, Cassidy RJ, Dawson TL, Ross B, Graham SJ. Transient and sustained components of the sensorimotor BOLD response in fMRI. Magn Reson Imaging. 2012;30(6):837–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCrory P, Meeuwisse W, Aubry M, et al. Consensus statement on concussion in sport – the 4th international conference on concussion in sport held in Zurich, November 2012. Clin J Sport Med. 2013;23(2):89–117.

    Article  PubMed  Google Scholar 

  • Meyer GF, Spray A, Fairlie JE, Uomini NT. Inferring common cognitive mechanisms from brain blood-flow lateralization data: a new methodology for fTCD analysis. Front Psychol. 2014;5(552):1–15.

    Google Scholar 

  • Mojadidi MK, Roberts SC, Winoker JS, Romero J, Goodman-Meza D, Gevorgyan R, Tobis JM. Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt: a bivariate meta-analysis of prospective studies. JACC Cardiovasc Imaging. 2014;7(3):236–50.

    Article  PubMed  Google Scholar 

  • Muttagin Z, Uozumi T, Kuwabara S, et al. Hyperaemia prior to acute cerebral swelling in severe head injuries: the role of transcranial Doppler monitoring. Acta Neurochir. 1993;123(1):76–81.

    Article  Google Scholar 

  • Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:629378.

    PubMed  PubMed Central  Google Scholar 

  • Petersen LJ, Petersen JR, Talleruphuus U, Ladefoged SD, Mehlsen J, Jensen HÆ. The pulsatility index and the resistive index in renal arteries. Associations with long-term progression in chronic renal failure. Nephrol Dial Transplant. 1997;12(7):1376–80.

    Article  CAS  PubMed  Google Scholar 

  • Poldrack RA. The future of fMRI in cognitive neuroscience. Neuroimage. 2012;62(2):1216–20.

    Article  PubMed  Google Scholar 

  • Raichle ME, Hartman BK, Eichling JO, Sharpe LG. Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci U S A. 1975;72(9):3726–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raya A, Diringer M. Treatment of subarachnoid hemorrhage. Crit Care Clin. 2014;30(4):719–33.

    Article  PubMed  Google Scholar 

  • Rigamonti A, Ackery A, Baker A. Transcranial Doppler monitoring in subarachnoid hemorrhage: a critical tool in critical care. Can J Anaesth. 2008;55(2):112–23.

    Article  PubMed  Google Scholar 

  • Ringelstein E, Droste D, Babikian V, et al. Consensus on microembolus detection by TCD. International Consensus Group on Microembolus Detection. Stroke. 1998;29:725–9.

    Article  CAS  PubMed  Google Scholar 

  • Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofman A, Breteler MM. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam study. Ann Neurol. 2005;57(6):789–94.

    Article  PubMed  Google Scholar 

  • Schmidt P, Krings T, Willmes K, Roessler F, Reul J, Thron A. Determination of cognitive hemispheric lateralization by functional transcranial Doppler cross-validated by functional MRI. Stroke. 1999;30(5):939–45.

    Article  CAS  PubMed  Google Scholar 

  • Shim Y, Yoon B, Shim D, et al. Cognitive correlates of cerebral vasoreactivity on transcranial Doppler in older adults. J Stroke Cerebrovasc Dis. 2014;24(6):1262–9.

    Article  Google Scholar 

  • Sloan MA, Alexandrov AV, Tegeler CH, et al. Assessment: transcranial Doppler ultrasonography: report of the therapeutic and technology assessment subcommittee of the American Academy of Neurology. Neurology. 2004;62:1468–81.

    Article  CAS  PubMed  Google Scholar 

  • Stefani A, Sancesario G, Pierantozzi M, et al. CSF biomarkers, impairment of cerebral hemodynamics and degree of cognitive decline in Alzheimer’s and mixed dementia. J Neurol Sci. 2009;283(1–2):109–15.

    Article  CAS  PubMed  Google Scholar 

  • Stump D, Brown W, Moody D, et al. Microemboli and neurologic dysfunction after cardiovascular surgery. Semin Cardiothorac Vasc Anesth. 1999;3(1):47–54.

    Article  Google Scholar 

  • Su X, Undar A. Brain protection during pediatric cardiopulmonary bypass. Artif Organs. 2010;34(4):E91–102.

    Article  PubMed  Google Scholar 

  • Tomek A, Urbanová B, Hort J. Utility of transcranial ultrasound in predicting Alzheimer’s disease risk. J Alzheimers Dis. 2014;42(4):S365–74.

    PubMed  Google Scholar 

  • Troisi E, Silvestrini M, Matteis M, Monaldo BC, Vernieri F, Caltagirone C. Emotion-related cerebral asymmetry: hemodynamics measured by functional ultrasound. J Neurol. 1999;246(12):1172–6.

    Article  CAS  PubMed  Google Scholar 

  • Troisi E, Peppe A, Pierantozzi M, Matteis M, Vernieri F, Stanzione P, Silvestrini M, Caltagirone C. Emotional processing in Parkinson’s disease. A study using functional transcranial doppler sonography. J Neurol. 2002;249(8):993–1000.

    Article  CAS  PubMed  Google Scholar 

  • Vingerhoets G, Stroobant N. Lateralization of cerebral blood flow velocity changes during cognitive tasks: a simultaneous bilateral transcranial Doppler study. Stroke. 1999;30(10):2152–8.

    Article  CAS  PubMed  Google Scholar 

  • Wells P. Ultrasound imaging. Phys Med Biol. 2006;51(13):R83–98.

    Article  CAS  PubMed  Google Scholar 

  • Wijdicks EF. The diagnosis of brain death. N Engl J Med. 2001;344:1215–21.

    Article  CAS  PubMed  Google Scholar 

  • Wijdicks E, Varelas P, Gronseth G, Greer D, American Academy of Neurology. Evidence-based guideline update: determining brain death in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2010;74(23):1911–8.

    Article  PubMed  Google Scholar 

  • Wu LA, Malouf JF, Dearani JA, Hagler DJ, Reeder GS, Petty GW, Khandheria BK. Patent foramen ovale in cryptogenic stroke: current understanding and management options. Arch Intern Med. 2004;164(9):950–6.

    Article  PubMed  Google Scholar 

  • Yawn B, Buchanan G, Afenyi-Annan. Management of sickle cell disease: summary of the, evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory R. Bashford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Truemper, E.J., Bashford, G.R. (2016). Cerebral Blood Flow Measurement for Neurological Assessments: Functional Transcranial Doppler Ultrasound. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7678-4_46

Download citation

Publish with us

Policies and ethics