CIVE 498/898 Environmental Air Pollution Engineering Spring 2019, 3 credits

Instructor:

Ashraf Aly Hassan, Ph.D., P.E. N121 Scott Engineering Center Link (SLNK) <u>ahassan@unl.edu</u> Office hour: 1:00-2:00 on Friday

Text:

1. Air Pollution Control: A Design Approach. C. David Cooper, F. C. Alley. Waveland Pr Inc; 4th edition (September 1, 2010)

Supplemental text:

1. Air Pollution Control Equipment Calculations. Louis Theodore. 2008 John Wiley & Sons, Inc

Course Description:

Environmental engineers are entrusted with protecting human health and the environment. One especially important aspect is protecting air quality. In this class, we will integrate an understanding of science and engineering to explore the relationship between pollutant emissions and environmental impacts. We will also develop an understanding of the impact of regulations and engineering controls. Part of the class will focus on management of air pollution management including permitting and inventories.

Learning Objectives:

- Apply knowledge of air pollution history, regulations, and adverse effects to evaluate potential future regulatory needs.
- Solve air quality problems by applying knowledge of math, science, and engineering.
- Analyze and clearly explain the impact of regulations and controls on air quality/climate based on complex factors such as meteorology, chemistry, physics, and emission rates.
- Analyze the emissions of air pollution sources and determine regulatory requirements.
- Communicate technical information concisely and effectively.
- Evaluate and design different air pollution control equipment.

Grading Policy:

Evaluation Methods	Туре	Percentages
Assignment, Homework & Quiz	Group & Individual	20
Midterm Exam - I	Individual	15
Midterm Exam - II	Individual	15
Final Exam	Individual	20
Class Project & Lab Exercise*	Individual	20
Participation and Attendance**	Individual	10
Total		100

* Students signed up for the class at the 898 level need to complete an additional paper with class presentation

** Automatic F for absences > 6 or for unexcused absences > 3

Final grades will be assigned on the standard scale as follows:

97-100) A+	80-83	B-	63-67	D
93-97	А	77-80	C+	60-63	D-
90-93	A-	73-77	С	<60	F
87-90	B+	70-72	C-		
83-87	В	67-70	D+		

Tentative Schedule

Week #	<u>Major Topic</u>	<u>Content</u>	<u>Reading</u> <u>Required</u>	<u>Assignments</u>
Week 1 1/7	Air Pollution Overview	 Pollutants Sources Effects Trends & Regulations 	Chapter 1 and Supplementary Notes	<u>Assigned in</u> <u>class</u>
Week 2 1/14	Fundamentals	 Chemical Kinetics Mixing Mass & Heat transfer Probability theory 	Chapter 2 and Supplementary Notes	Assigned in <u>class</u>
Week 3 1/21	Particulate Matter - I	IntroductionCharacteristicsBehaviorCyclones	Chapters 3, 4 & 9, and Supplementary notes	<u>Assigned in</u> <u>class</u>
Week 4 1/28 Mid Term 1	Particulate Matter – II	 Electrostatic Precipitators Fabric Filters 	Chapters 5, 6 & 9, and supplementary materials	Assigned in class
Week 5 2/4	Combustion	 Fuels Combustion systems Formation of air pollutants 	Supplementary materials	<u>To be given in</u> <u>class</u>

Week 6 2/11	Air Pollution	• Air Permitting	Supplementary materials	<u>-</u>	
2/11 Week 7 2/18	Management - I Air Pollution Management - II	 Ambient Emission Monitoring Emission Inventory NESHAPS/ NSPS 	Supplementary materials	Class Project	
Week 8 2/25	Emission Polluter Sources	• Selected industries by presenters	<u>Literature</u> <u>review</u>	<u>Class</u> <u>Presentations</u>	
Week 9 3/4 Mid Term 2	Gases & Vapors - I	 Properties VOC Incinerators	Chapter 10, 11 & 17, and supplementary materials	<u>Assigned in</u> <u>class</u>	
Week 10 3/11	Gases & Vapors - II	Gas AdsorptionGas Absorption	Chapter 12, 13 & 17, and supplementary materials	Assigned in <u>class</u>	
Week 11 3/18 Spring Break	SAFELY ENJOY THE SPRING BREAK				
Week12 3/25	Gases & Vapors - III	 Biological Control Control of Sulfur Oxides 	Chapters 14, 15 & 17, and Supplementary materials	<u>To be given in</u> <u>class</u>	
Week 13 4/1	Gases & Vapors - IV	• Control of Nitrogen Oxides	Chapters 16 & 17, and Supplementary materials	<u>Assigned in</u> <u>class</u>	
Week 14 4/8	Air Pollution Modelling	• Air Pollution Models	Chapters 19 & 20, and Supplementary materials	Lab Exercise	
Week 15 4/15	Odors	PollutantsGenerationMeasurementsTreatment	Supplementary materials	<u>To be given in</u> <u>class</u>	
Week 16 4/22	Measurement	 Laboratory Instrumentation CEMS/COMS/PEMS Stack Testing & EPA Methods 	Laboratory Manuals and Supplementary materials	<u>To be given in</u> <u>class</u>	
Week 17 4/29	Final Exam				

General Notes:

1. I reserve the right to make any changes to the course including removing/adding topics.

2. Late assignments will be deducted 10% per day, unless you have a valid excuse. You must show your work clearly to obtain credit.

3. Two midterms will be given at scheduled times during class.

4. Final exam is scheduled on April 30th.

5. Class project will involve emission calculations of actual applications submitted for permitting at the local air agency. Project will be performed in groups of three.

6. Class presentations (15 minutes presentation and 10 minutes questions) and associated report are expected by individual graduate students only and will be presented to the entire class. Students will choose the sources they will research by week 3.

7. Air pollution modelling exercise will be conducted individually but the report will be submitted by groups of three students.

Expectations:

- 1. I expect you to learn from each other. Thus, I have no objections to students working together, *provided it is a mutual learning experience for all involved*. Direct copying of another's work is not allowed. If one person has already solved a problem, and you have put in a good-faith effort on it but still cannot solve it, it is acceptable for that person to teach you how to solve it. However, it is not acceptable for him/her to simply give you their calculation/report/spreadsheet as a guide.
- 2. Academic honesty is each student's responsibility. You are responsible for not cheating and not allowing anyone to cheat from you. Academic dishonesty is described in Section 4.2 of the Student Code of Conduct and Disciplinary Procedures. If there is evidence of cheating on exams, the minimum penalty will be a zero for all parties involved. Evidence of cheating also may be reported to the Vice Chancellor for Student Affairs in accordance with University guidelines for dealing with academic dishonesty.