Spring 2019 CEVE 419 - Flow Systems Design

Instructor:	Dr. Junke (Drinker) Guo, Dept. Civil Eng., PKI 204D							
When•	FIGHE. $334-3673$, E-mail. <u>Jgu02(<i>a</i>/um.edu</u>) MW 0.00 AM $= 10.15$ AM							
Where	PKI 274							
Nate:	Ian 07 2019 - May 03 2019							
Office hour	TR $4.00 = 5.00 \text{ PM}$							
Office nour.	11(4.00 – 5.0	0 1 101						
Prerequisites:	CIVE 326 or 327; CIVE 352							
Textbook:	<i>Fundamentals</i> A. Osman Aka 601638-0	<i>tals of Hydraulic Engineering Systems</i> , 5 th Ed., Robert J. Houghtalen, Akan, and Ned H. C. Hwang, Pretice Hall, ISBN-13: 978-0-13-						
Objectives:	Apply hydraulic principles to design water distribution systems, wastewater and stormwater collection systems, channelized flow systems, and treatment facilities.							
Topics:	 Pressure flow systems: Pipes and pumps Conveyance systems: Open channel flow Hydraulic structures 							
Outcomes:	 This course is contributing towards your education as follows: Understand principles of mathematics, science and engineering. Use appropriate modern techniques, skills and tools. Communicate technically and effectively. Understand the impact of engineering on global and societal issues. Have knowledge of contemporary issues. 							
Computer Usage:	Spreadsheets of	or MatLab						
Final Grades:	97-100 A+, 87-89 B+, 77-79 C+,	93-96 A, 83-86 B, 73-76 C,	90-92 A 80-82 70-72 0	A- B- C-				
	67-69 D+,	63-66 D,	60-62 I	D-,	< 60 F			
Crada Braakdawn:	Attendence			25%				
Grade Dreakuowii.	Project #1: Pipe network design			25%				
	Project #2: Pump selection			25%				
	Project #3: Water surface profiles			25%				
Homework:	3 projects will be assigned. You have to complete each before deadline. Late homework will not be accepted. If you have are not available to submit them, arrange to submit them early.							
Final:	No final.							

Spring 2019 CIVE 419: Flow Systems Design

Instructor: Dr. Junke (Drinker) Guo, Dept. of Civil Engineering, PKI 204D Phone: 554-3873 E-mail: jguo2@unl.edu

Date	Торіс	Reference	Exercise
	#1: Introduction	Chapter 3	
	#2: United network flow model for water infrastructure systems		
	#3: Single pipe computation		
	#4: Pipe Network: Principle	Chapter 4	
	#5: Example: Network Computation		
	#6: Distribution System Design		
	Design Project I		
	#7: Pump: Simple Pump Computation	Chapter 5	
	#8: Systems Characteristics and Ideal Head Rise		
	#9: Pump Performance Characteristics		
	#10: Pump Selection (I)		
	#11: Pump Similarity Law		
	#12: Net Positive Suction Head		
	#13: Piping Systems Design and Pump Selection Procedure		
	Design Project II		
	#14: Open-Channel: Concepts and Variables	Chapter 6	
	#15: Rapid Varied Flow		
	#16: Open-Channel Flow Measurement		
	#17: Uniform Flow		
	#18: Specific Energy and Critical Flow		
	#19: Gradually Varied Flow		
	#20: River Network		
	#21: Software: HEC-RAS		
	Design Project III		
	#22: Urban Drainage Systems	Chapter 11	