

## Real-time conversion of tissue-scale mechanical forces into an interdigitated growth pattern

Samuel A. Belteton<sup>®1</sup>, Wenlong Li<sup>®2</sup>, Makoto Yanagisawa<sup>3</sup>, Faezeh A. Hatam<sup>®2</sup>, Madeline I. Quinn<sup>®1</sup>, Margaret K. Szymanski<sup>4</sup>, Mathew W. Marley<sup>®1</sup>, Joseph A. Turner<sup>®2</sup> and Daniel B. Szymanski<sup>®1,5</sup>

Additional Abaqus information



# Dr. Wenlong Li created the Abaqus files shown here

- Abaqus 2019 version was used for the FE analysis.
- The INP input files were created for each cell model in the manuscript which are titled by the figure number.
- For questions, please contact J. Turner (jaturner@unl.edu)

## Fig. 2 (INP file)



Assembly and boundary condition.



Turgor pressure = 0.6 MPa Material properties: 1. All the pavement cells: E = 600 MPa, v=0.47 Relaxation time = 6.8s,  $G_i/G_0 = 0.15$ 2. Middle pectin and the surrending pectin: E = 100 MPa, v=0.47 Relaxation time = 6.8s,  $G_i/G_0 = 0.15$ 

#### Simulation results: cut-view



### Extended Data Fig. 2J (INP file)



Assembly and boundary condition.



Turgor pressure = 0.6 MPa Material properties: 1. All the pavement cells: E = 600 MPa, v=0.47 Relaxation time = 6.8s,  $G_i/G_0 = 0.15$ 2. Middle pectin and the surrending pectin: E = 100 MPa, v=0.47 Relaxation time = 6.8s,  $G_i/G_0 = 0.15$ 

Simulation results: (Cell 2 and 5 are hidden)

S, Max. Principal



### Fig. 6 furrow (INP file)



Assembly and boundary condition.



Turgor pressure = 0.5 MPa Material properties:

- 1. All the pavement cells: E = 480 MPa, v=0.47Relaxation time = 6.8s,  $G_i/G_0 = 0.15$
- 2. Middle pectin : E = 1 MPa, v=0.47
- 2. Surrounding pectin : E = 100 MPa, v=0.47

Simulation results: Cell 1 is hidden



