## Quantum sensing and Quantum Materials

Abdelghani Laraoui, Assistant Professor Mechanical & Materials Engineering Department, University of Nebraska-Lincoln

Sep 24, 2019

# **Diamond Nitrogen-Vacancy center**

## Defects add unique properties to diamond



## Diamond lattice with Nitrogen-Vacancy (NV)



- C3v symmetry
- NV0, **NV-**
- 6 e-, 2 unpaired (gs)

# Nitrogen-Vacancy center: detailed picture



# NV engineering in diamond

# Single-crystal CVD growth

- 1-10<sup>5</sup> nm layers
- 99 % C-12 (I=0)
- Defect densities < 10 ppb



http://www.vivialdiamonds.com/



Single photon emission from isolated NVs

#### Nitrogen, He, + annealing, + nanopatterning

- Single-center addressability
- Nanometer placement

#### nanodiamonds/nanopillars



M. Toyli, D. D. Awschalom, et al., *Nano Lett.*10, 3168 (2010)



1 µm

Trusheim, Li, Laraoui, et al., *Nano Lett.*, 14 (1), 32-36 (2014) Kehayias, Laraoui, et al., *Nature Comms.* 8, 188 (2017).

## NV centers in diamond: Quantum sensing



Barry et al. PNAS (2016)

Smit, Laraoui, et al. *Science Advances* (2013)

Advances, under review

#### Project 1: diamond quantum sensing



NV-microscopy: far-field, nearfield (AFM)

- Nanoscale (sub-nm) resolution
- Super-sensitivity: single spin detection, sub-pT magnetic field, sub-mK temperature,...
- Flexibility: 1-1000 K, KHz-THz, 0-3T, optical/electrical readout, …



2D skyrmion-topological states in FeGe, PdFe,...





Surface spin current in topological insulators (bismuth selenide, ...)

Transition-metal nanoparticles, size < 20 nm for application in bioimaging, high-density data storage

Many physical phenomena are not explored at the nanometer scale: spin textures, heat transfer, electron/spin transport, physical properties of low-dimensional materials, ...

#### Project 2: Study new quantum materials (defects in WDG semiconductors/ 2D materials)

| Table I. Relevant properties of potential host materials. |                   |                            |                                 |
|-----------------------------------------------------------|-------------------|----------------------------|---------------------------------|
| Material                                                  | Bandgap (eV)      | Spin-Orbit Splitting (meV) | Stable Spinless Nuclear Isotope |
| Diamond                                                   | 5.5               | 6                          | Yes                             |
| 3C-SiC                                                    | 2.2               | 10                         | Yes                             |
| 4H-SiC                                                    | 3.238             | 6.8                        | Yes                             |
| 6H-SiC                                                    | 2.86              | 7.1                        | Yes                             |
| AIN                                                       | 6.13              | 3641                       | No                              |
| GaN                                                       | 3.44              | 17                         | No                              |
| AIP                                                       | 2.45              | 50 (theory) <sup>42</sup>  | No                              |
| GaP                                                       | 2.27              | 80 (RT)                    | No                              |
| AIAs                                                      | 2.15              | 275 (RT)                   | No                              |
| Zn0                                                       | 3.3 <sup>39</sup> | -3.5                       | Yes                             |
| ZnS                                                       | 3.6840            | 64 (RT)                    | Yes                             |
| ZnSe                                                      | 2.82              | 420 (RT)                   | Yes                             |
| ZnTe                                                      | 2.25              | 970                        | Yes                             |
| CdS                                                       | 2.48              | 67                         | Yes                             |





D. J. Christle, et al. *Nature Materials*, 14, 160 (2015).

2D materials: hBN, Transition metal dichalcogenide(MoS<sub>2</sub>, WS2, WSe<sub>2</sub>, MoTe<sub>2</sub>)



Very emerging field: origin of defects not well understood, spin coherence mechanisms, integration to devices (eg. optoelectronics), scalable quantum networks,...

Samples: WBG: SiC (SiV, 6H, transition-metal ions), ZnO, AIN, GaN,...
2D: CVD + exfoliated monolayer/multilayer flakes from bulk hBN, WSe<sub>2</sub>, MoS<sub>2</sub>, ...

**Projetcs**: 1) study the origin of defects, 2) measure the spin decoherence lifetime, 3) explore single photon emission for integration to optoelectronic devices, 4) develop new characterization techniques tailored to varieties of excitations (optical, electrical, magnetic, thermal, strain, etc.), 5) build quantum networks based on their quantum properties.

**Applications**: innovative device designs and sensors based on their novel properties, scalable quantum systems for computing, optoelectronics, spintronics, etc

**Setup:** Confocal fluorescence microscope (single-photon sensitivity, high spectral resolution ~100 MHz, T = 4 - 300 K, B = 0-1 T)





Built similar setups at CCNY, Univ. Strasbourg, UNM from scratch to full operation

#### Project 2: Applications of new quantum materials: nanophotonics



Enhanced nonlinear and quantum optical effects based on localized gapplasmon nanomaterials

### Students/postdocs wanted!

Lab 127.4A

If you want to get trained as a quantum engineer and learn new skills in quantum optics, quantum materials, and quantum (bio) sensing, please contact us.



Email: <u>alraoui2@unl.edu</u>, P: (402) 472-7680, office 312NH, Labs: 250, 127.4A Scott