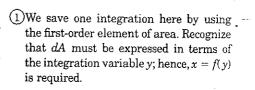
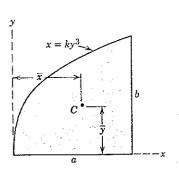
# 2D Centraids


Determine by direct integration the centroid of the area shown. Express your answer in terms of a and h. THEN-  $A = \int dA = \int_{0}^{\alpha} h(1-\frac{x}{\alpha})dx = h\left[x-\frac{x^{2}}{2\alpha}\right]_{0}^{\alpha}$  $= \frac{1}{2} a h$   $= \frac{1}{2} a h$   $= \sqrt{x} \left[ x \left[ h \left( 1 - \frac{x}{a} \right) dx \right] + h \left( \frac{x^2}{2} - \frac{x^3}{3a} \right] a$  $\begin{aligned} & = \frac{1}{6} \alpha^{2} h \\ & = \int_{0}^{\alpha} \frac{h}{2} (1 + \frac{x}{\alpha}) [h(1 - \frac{x}{\alpha}) dx] \\ & = \frac{h^{2}}{2} \int_{0}^{\alpha} (1 - \frac{x^{2}}{\alpha^{2}}) dx = \frac{h^{2}}{2} [x - \frac{x^{3}}{3\alpha^{2}}]_{0}^{\alpha} \end{aligned}$  $\bar{\chi}A=J\bar{\chi}_{EL}dA$ :  $\bar{\chi}(\frac{1}{2}ah)=\frac{1}{6}a^2h$ 9 A= 19EL dA: 9(2 ah)= 3ah2 Centroid of a triangular area. Determine the distance  $\overline{h}$  from the

Solution. The x-axis is taken to coincide with the base. A differential strip of area dA = x dy is chosen. By similar triangles x/(h - y) = b/h. Applying the second of Eqs. 5/5a gives

base of a triangle of altitude h to the centroid of its area.


$$[A\overline{y} = \int y_c \, dA] \qquad \frac{bh}{2} \, \overline{y} = \int_0^h y \, \frac{b(h-y)}{h} \, dy = \frac{bh^2}{6}$$
and
$$\overline{y} = \frac{h}{3} \qquad Ans.$$

This same result holds with respect to either of the other two sides of the triangle considered a new base with corresponding new altitude. Thus, the centroid lies at the intersection of the medians, since the distance of this point from any side is one-third the altitude of the triangle with that side considered the base.





Locate the centroid of the area under the curve  $x = ky^3$  from x = 0 to x = a.



**Solution I.** A vertical element of area dA = y dx is chosen as shown in the figure. The x-coordinate of the centroid is found from the first of Eqs. 5/5a. Thus,

$$(1) [A\overline{x} = \int x_c dA]$$

$$\overline{x} \int_0^a y \ dx = \int_0^a xy \ dx$$

Substituting  $y = (x/k)^{1/3}$  and  $k = a/b^3$  and integrating give

$$\frac{3ab}{4}\,\overline{x} = \frac{3a^2b}{7} \qquad \overline{x} = \frac{4}{7}a \qquad Ans.$$

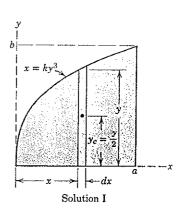
In solving for  $\tilde{y}$  from the second of Eqs. 5/5a, the coordinate to the centroid of the rectangular element is  $y_c = y/2$ , where y is the height of the strip governed by the equation of the curve  $x = ky^3$ . Thus, the moment principle becomes

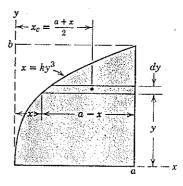
$$[A\overline{y} = \int y_c \, dA]$$

$$\frac{3ab}{4}\,\bar{y} = \int_0^a \left(\frac{y}{2}\right)y\,dx$$

Substituting  $y = b(x/a)^{1/3}$  and integrating give

$$\frac{3ab}{4}\,\overline{y} = \frac{3ab^2}{10} \qquad \overline{y} = \frac{2}{5}b \qquad Ans.$$


Solution II. The horizontal element of area shown in the lower figure may be employed in place of the vertical element. The x-coordinate to the centroid of the rectangular element is seen to be  $x_c = x + \frac{1}{2}(a-x) = (a+x)/2$  which is simply the average of the coordinates a and x of the ends of the strip. Hence,


$$[A\overline{x} = \int x_c dA] \qquad \overline{x} \int_0^b (a - x) dy = \int_0^b \left(\frac{a + x}{2}\right) (a - x) dy$$

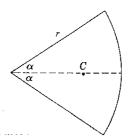
The value of  $\overline{y}$  is found from

$$[A\overline{y} = \int y_c dA] \qquad \overline{y} \int_0^b (a - x) dy = \int_0^b y(a - x) dy$$

where  $y_c = y$  for the horizontal strip. The evaluation of these integrals will check the previous results for  $\bar{x}$  and  $\bar{y}$ .






Solution II

(1) Note that  $x_c = x$  for the vertical element.

| Centroid of a circular arc. Locate the centroid of a circular arc as shown in the figure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | à         |
| Solution. Choosing the axis of symmetry as the x-axis makes $\overline{y}=0$ . A differential element of arc has the length $dL=rd\theta$ expressed in polar coordinates, and the x-coordinate of the element is $r\cos\theta$ . Applying the first of Eqs. $5/4$ and substituting $L=2\alpha r$ give $[L\overline{x}=\int xdL] \qquad (2\alpha r)\overline{x}=\int_{-a}^{a}(r\cos\theta)rd\theta$ $2\alpha r\overline{x}=2r^2\sin\alpha$ $\overline{x}=\frac{r\sin\alpha}{\alpha} \qquad Ans.$ For a semicircular arc $2\alpha=\pi$ , which gives $\overline{x}=2r/\pi$ . By symmetry we see immediately that this result also applies to the quarter-circular arc when the measurement is made as shown. $\boxed{1}$ It should be perfectly evident that polar coordinates are preferable to rectangular coordinates to express the length of a circular arc. | r = r = r |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |



Centroid of the area of a circular sector. Locate the centroid of the area of a circular sector with respect to its vertex.

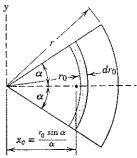


**Solution I.** The x-axis is chosen as the axis of symmetry, and  $\bar{y}$  is therefore automatically zero. We may cover the area by moving an element in the form of a partial circular ring, as shown in the figure, from the center to the outer periphery. The radius of the ring is  $r_0$  and its thickness is  $dr_0$ , so that its area is  $dA = 2r_0\alpha dr_0$ .

The x-coordinate to the centroid of the element from Sample Problem 5/1 is  $x_c = r_0 \sin \alpha/\alpha$ , where  $r_0$  replaces r in the formula. Thus, the first of Eqs. 5/5a gives

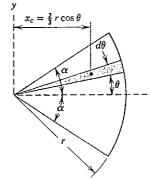
$$[A\overline{x} = \int x_c \, dA] \qquad \frac{2\alpha}{2\pi} (\pi r^2) \overline{x} = \int_0^r \left(\frac{r_0 \sin \alpha}{\alpha}\right) (2r_0 \alpha \, dr_0)$$

$$r^2 \alpha \overline{x} = \frac{2}{3} r^3 \sin \alpha$$

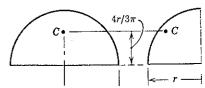

$$\overline{x} = \frac{2}{3} \frac{r \sin \alpha}{\alpha} \qquad Ans.$$

Solution II. The area may also be covered by swinging a triangle of differential area about the vertex and through the total angle of the sector. This triangle, shown in the illustration, has an area  $dA = (r/2)(r\,d\theta)$ , where higher-order terms are neglected. From Sample Problem 5/2 the centroid of the triangular element of area is two-thirds of its altitude from its vertex, so that the x-coordinate to the centroid of the element is  $x_c = \frac{2}{3}r\cos\theta$ . Applying the first of Eqs. 5/5a gives

$$[A\overline{x} = \int x_c \, dA] \qquad (r^2 \alpha) \overline{x} = \int_{-\alpha}^{\alpha} (\frac{2}{3} r \cos \theta) (\frac{1}{2} r^2 \, d\theta)$$
 
$$r^2 \alpha \overline{x} = \frac{2}{3} r^3 \sin \alpha$$
 and as before 
$$\overline{x} = \frac{2}{3} \frac{r \sin \alpha}{\alpha} \qquad Ans.$$


For a semicircular area  $2\alpha = \pi$ , which gives  $\bar{x} = 4r/3\pi$ . By symmetry we see immediately that this result also applies to the quarter-circular area where the measurement is made as shown.

It should be noted that, if we had chosen a second-order element  $r_0 dr_0 d\theta$ , one integration with respect to  $\theta$  would yield the ring with which Solution I began. On the other hand, integration with respect to  $r_0$  initially would give the triangular element with which Solution II began.




Solution I

(1) Note carefully that we must distinguish between the variable  $r_0$  and the constant r.



Solution II



2)Be careful not to use  $r_0$  as the centroidal coordinate for the element.

# 3b Centroids

Hemispherical volume. Locate the centroid of the volume of a hemisphere of radius r with respect to its base.

**Solution I.** With the axes chosen as shown in the figure,  $\bar{x} = \bar{z} = 0$  by symmetry. The most convenient element is a circular slice of thickness dy parallel to the x-z plane. Since the hemisphere intersects the y-z plane in the circle  $y^2 + z^2 = r^2$ , the radius of the circular slice is  $z = +\sqrt{r^2 - y^2}$ . The volume of the elemental slice becomes

$$dV = \pi(r^2 - y^2) \, dy$$

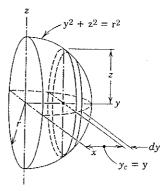
The second of Eqs. 5/6a requires

$$[V\overline{y} = \int y_c \, dV] \qquad \overline{y} \, \int_0^r \pi(r^2 - y^2) \, dy = \int_0^r y \pi(r^2 - y^2) \, dy$$

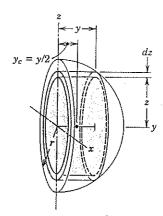
where  $y_c = y$ . Integrating gives

$$\frac{2}{3}\pi r^3 \widetilde{y} = \frac{1}{4}\pi r^4 \qquad \widetilde{y} = \frac{3}{8}r \qquad Ans.$$

Solution II. Alternatively we may use for our differential element a cylindrical shell of length y, radius z, and thickness dz, as shown in the lower figure. By expanding the radius of the shell from zero to r, we cover the entire volume. By symmetry the centroid of the elemental shell lies at its center, so that  $y_c = y/2$ . The volume of the element is  $dV = (2\pi z \ dz)(y)$ . Expressing y in terms of z from the equation of the circle gives  $y = +\sqrt{r^2 - z^2}$ . Using the value of  $\frac{2}{3}\pi r^3$  computed in Solution I for the volume of the hemisphere and substituting in the second of Eqs. 5/6a give us


$$[V\overline{y} = \int y_c \, dV] \qquad (\frac{2}{3}\pi r^3)\overline{y} = \int_0^r \frac{\sqrt{r^2 - z^2}}{2} (2\pi z \sqrt{r^2 - z^2}) \, dz$$

$$= \int_0^r \pi (r^2 z - z^3) \, dz = \frac{\pi r^4}{4}$$


$$\overline{y} = \frac{3}{8}r$$

Solutions I and II are of comparable use since each involves an element of simple shape and requires integration with respect to one variable only.

**Solution III.** As an alternative, we could use the angle  $\theta$  as our variable with limits of 0 and  $\pi/2$ . The radius of either element would become  $r \sin \theta$ , whereas the thickness of the slice in Solution I would be  $dy = (r \ d\theta) \sin \theta$  and that of the shell in Solution II would be  $dz = (r \ d\theta) \cos \theta$ . The length of the shell would be  $y = r \cos \theta$ .

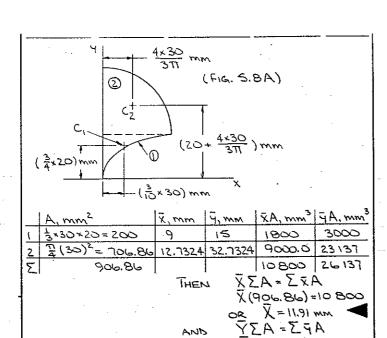


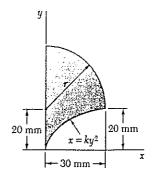
Solution I



Solution II



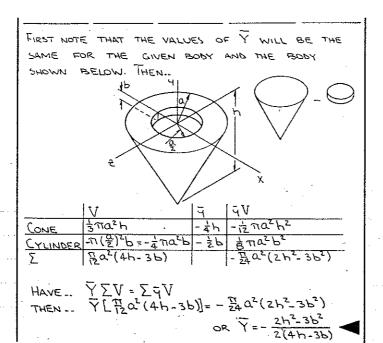

Solution III

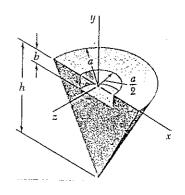

(1) Can you identify the higher-order element of volume which is omitted from the expression for dV?

# Centroids : Composite Bodies

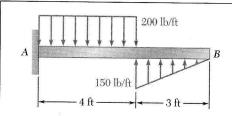
|                                                                                                                                              |                                               |                                                     | 16 in. | 38 in: |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|--------|--------|
| G C <sub>1</sub>                                                                                                                             | 4×38 IN. 2                                    | 10 ini.                                             | 20 in. |        |
| $ \begin{array}{c c}  & A \cdot IN^2 \\  & \overline{2}(38)^2 = 2268 \\ \hline  & 2 - 20 \times 16 = -320 \\ \hline  & 1948.23 \end{array} $ | 10 8 3200<br>3200<br>THEN XZA = X<br>X (1948) | 36 581<br>- 2 560<br>- 34 021<br>- XA<br>23) = 3200 |        |        |
|                                                                                                                                              | OR X = AND YΣA = Y(1948 OR Y =                | Σ q A<br>23)= 34 021<br>17.46 IN.                   |        |        |
|                                                                                                                                              |                                               |                                                     |        |        |
|                                                                                                                                              |                                               | -                                                   |        |        |
|                                                                                                                                              |                                               |                                                     | -      |        |
|                                                                                                                                              |                                               |                                                     |        |        |
|                                                                                                                                              |                                               |                                                     |        |        |
| <br>                                                                                                                                         |                                               |                                                     |        |        |

Locate the centroid of the plane area shown.




| straight se | The homogeneous wire ABC is bent into a semicircular arc and a ction as shown and is attached to a hinge at A. Determine the value hich the wire is in equilibrium for the indicated position.  FIRST NOTE THAT FOR EQUILIBRIUM, THE CENTER OF GRAVITY OF THE WIRE MUST LIE ON A VERTICAL LINE THROWN A. FURTHER, BECAUSE THE WIRE IS HOMOGENEOUS, IT'S CENTER OF GRAVITY WILL COINCIDE WITH THE CENTROIS OF THE CORRESPONDING LINE. THUS, |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | SO THAT $\Sigma \bar{\chi} L = 0$ THEN $(-\frac{1}{2}r\cos\theta)(r) + (\frac{2r}{\pi} - r\cos\theta)(\pi r) = 0$ OR $\cos\theta = \frac{4}{1+2\pi}$ $= 0.54921$ or $\theta = 56.7^{\circ}$                                                                                                                                                                                                                                                |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

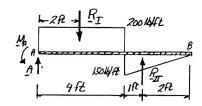

----

## ${\bf 5.107}$ Determine the y coordinate of the centroid of the body shown.





|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12 m                                |      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z = 0.18  m                           |      |
|            | IRST ASSUME THAT THE SHEET METAL IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.16 m                                |      |
|            | HOMOGENEOUS SO THAT THE CENTER OF GRAVITY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05 m                                | x    |
|            | THE FORM WILL COINCIDE WITH THE CENTROID OF THE CORRESPONDING AREA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |      |
|            | 41 -0.18+3(0.12)=0.22 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |      |
|            | $I = \frac{1}{3}(0.2 \text{ m})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · |      |
|            | $\overline{X}_{II} = \overline{A}_{II} = \frac{3 \times 0.18}{\pi} = \frac{0.36}{\pi} \text{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            | $\overline{X}_{12} = 0.34 - \frac{4 \times 0.05}{371}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |      |
|            | TV AM = 0.34 = 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |      |
|            | C. X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |      |
| <u>-</u>   | $A, m^2$ $\bar{\chi}_m$ $\bar{\gamma}_m m \bar{\chi}_m \bar{\chi}_m \bar{\chi}_m^3 \bar{\gamma}_m \bar{\chi}_m^3 = \bar{\chi}_m m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |      |
| <u>_</u>   | \frac{1}{2}(0.2\text{X0.12})=0.012 \ 0 \ 0.22 \ \frac{0.2}{3} \ 0 \ 0.00264 \ 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |      |
|            | $\frac{\pi}{2}(0.18)(0.2) = 0.018\pi \frac{0.36}{\pi} = \frac{0.36}{\pi} = 0.1  0.00648  0.00648  0.005655$ $(0.16)(0.2) = 0.032  0.26  0  0.1  0.00832  0  0.0032 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |      |
|            | $\frac{1}{2}\frac{(0.16)(0.2)=0.032}{(0.05)^{2}=0.0075} = 0.56 = 0 = 0.01 = 0.00832 = 0 = 0.0032$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |      |
| <u>+</u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            | HAVE - X EV = EXV: X (0.096 622 m2) = 0.013 542 m3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |      |
|            | OR X=0.1402m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |      |
|            | Y ΣV= ΣqV: Y(0.096 622 m²)=0.00912 m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |      |
|            | OR \( \vec{V} = 0.0944 m \) \( \vec{Z} \subseteq \vec{V} \): \( \vec{Z} \) \( \vec{Z} |                                       |      |
|            | OR Z = 0.0959 m ◀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |      |
| . <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | **** |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | ,    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
| A          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | ,    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |      |



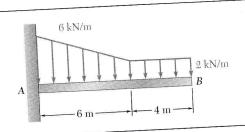

#### **PROBLEM 5.70**

Determine the reactions at the beam supports for the given loading.

#### **SOLUTION**

$$R_{\rm II} = (200 \text{ lb/ft})(4 \text{ ft}) = 800 \text{ lb}$$
  
 $R_{\rm II} = \frac{1}{2}(150 \text{ lb/ft})(3 \text{ ft}) = 225 \text{ lb}$ 




$$+ \sum F_y = 0$$
:  $A - 800 \text{ lb} + 225 \text{ lb} = 0$ 

 $A = 575 \text{ lb}^{\dagger} \blacktriangleleft$ 

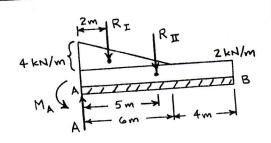
+)
$$\Sigma M_A = 0$$
:  $M_A - (800 \text{ lb})(2 \text{ ft}) + (225 \text{ lb})(5 \text{ ft}) = 0$ 

 $\mathbf{M}_A = 475 \, \mathrm{lb} \cdot \mathrm{ft} +$ 

**PROPRIETARY MATERIAL.** © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.



# PROBLEM 5.71


Determine the reactions at the beam supports for the given loading.

### SOLUTION

$$R_{\rm I} = \frac{1}{2} (4 \text{ kN/m})(6 \text{ m})$$
= 12 kN
$$R_{\rm II} = (2 \text{ kN/m})(10 \text{ m})$$
= 20 kN

$$+ \sum F_y = 0$$
:  $A - 12 \text{ kN} - 20 \text{ kN} = 0$ 

+)  $\Sigma M_A = 0$ :  $M_A - (12 \text{ kN})(2 \text{ m}) - (20 \text{ kN})(5 \text{ m}) = 0$ 



A = 32.0 kN

 $\mathbf{M}_A = 124.0 \,\mathrm{kN \cdot m}$