Homework #11 Solution

PROBLEM 8.3

Determine whether the block shown is in equilibrium and find the magnitude and direction of the friction force when $P = 100$ lb.

SOLUTION

Assume equilibrium:

\[\sum F_y = 0: \quad F + (45 \text{ lb}) \sin 30^\circ - (100 \text{ lb}) \cos 40^\circ = 0 \]

\[F = +54.0 \text{ lb} \]

\[\sum F_x = 0: \quad N - (45 \text{ lb}) \cos 30^\circ - (100 \text{ lb}) \sin 40^\circ = 0 \]

\[N = 103.2 \text{ lb} \]

(a) Maximum friction force:

\[F_m = \mu_s N \]

\[= 0.40(103.2 \text{ lb}) \]

\[= 41.30 \text{ lb} \]

We note that $F > F_m$. Thus, block moves up.

(b) Actual friction force:

\[F = F_k = \mu_k N = 0.30(103.2 \text{ lb}) = 30.97 \text{ lb}, \]

\[F = 31.0 \text{ lb} \\angle 30.0^\circ \]
PROBLEM 8.5

Determine the smallest value of P required to (a) start the block up the incline, (b) keep it moving up, (c) prevent it from moving down.

SOLUTION

(a) To start block up the incline:

$\mu_e = 0.40$

$\phi_e = \tan^{-1} 0.40 = 21.80^\circ$

From force triangle:

\[
\frac{P}{\sin 51.80^\circ} = \frac{45 \text{ lb}}{\sin 28.20^\circ}
\]

$P = 74.8 \text{ lb} \uparrow$

(b) To keep block moving up:

$\mu_k = 0.30$

$\phi_k = \tan^{-1} 0.30 = 16.70^\circ$

From force triangle:

\[
\frac{P}{\sin 46.70^\circ} = \frac{45 \text{ lb}}{\sin 33.30^\circ}
\]

$P = 59.7 \text{ lb} \uparrow$

(c) To prevent block from moving down:

From force triangle:

\[
\frac{P}{\sin 8.20^\circ} = \frac{45 \text{ lb}}{\sin 71.80^\circ}
\]

$P = 6.76 \text{ lb} \uparrow$
PROBLEM 8.7

The 80-lb block is attached to link AB and rests on a moving belt. Knowing that $\mu_s = 0.25$ and $\mu_k = 0.20$, determine the magnitude of the horizontal force P that should be applied to the belt to maintain its motion (a) to the right, (b) to the left.

SOLUTION

We note that link AB is a two-force member, since there is motion between belt and block $\mu_k = 0.20$ and $\phi_k = \tan^{-1} 0.20 = 11.31^\circ$.

(a) Belt moves to right

Free body: Block

Force triangle:

$$\frac{R}{\sin 120^\circ} = \frac{80 \text{ lb}}{\sin 48.69^\circ}$$

$$R = 92.23 \text{ lb}$$

Free body: Belt

$$+ \Sigma F_x = 0: \quad P - (92.23 \text{ lb}) \sin 11.31^\circ$$

$$P = 18.089 \text{ lb}$$

(b) Belt moves to left

Free body: Block

Force triangle:

$$\frac{R}{\sin 60^\circ} = \frac{80 \text{ lb}}{\sin 108.69^\circ}$$

$$R = 73.139 \text{ lb}$$

Free body: Belt

$$+ \Sigma F_x = 0: \quad (73.139 \text{ lb}) \sin 11.31^\circ - P = 0$$

$$P = 14.344 \text{ lb}$$
PROBLEM 8.8

The coefficients of friction between the block and the rail are \(\mu_s = 0.30 \) and \(\mu_k = 0.25 \). Knowing that \(\theta = 65^\circ \), determine the smallest value of \(P \) required (a) to start the block moving up the rail, (b) to keep it from moving down.

SOLUTION

(a) To start block up the rail:

\[\mu_s = 0.30 \]
\[\phi = \tan^{-1} 0.30 = 16.70^\circ \]

```
500 N

\[ P \]
\[ \sin 51.70^\circ = \frac{500 \text{ N}}{\sin (180^\circ - 25^\circ - 51.70^\circ)} \]

\( P = 403 \text{ N} \)
```

(b) To prevent block from moving down:

```
500 N

\[ P \]
\[ \sin 18.30^\circ = \frac{500 \text{ N}}{\sin (180^\circ - 25^\circ - 18.30^\circ)} \]

\( P = 229 \text{ N} \)
PROBLEM 8.13

The coefficients of friction are $\mu_s = 0.40$ and $\mu_k = 0.30$ between all surfaces of contact. Determine the smallest force $P$ required to start the 30-kg block moving if cable $AB$ (a) is attached as shown, (b) is removed.

SOLUTION

(a) Free body: 20-kg block

\[ W_1 = (20 \text{ kg})(9.81 \text{ m/s}^2) = 196.2 \text{ N} \]
\[ F_1 = \mu_s N_1 = 0.4(196.2 \text{ N}) = 78.48 \text{ N} \]

\[ +\text{ } \Sigma F = 0: \quad T - F_1 = 0 \quad T = F_1 = 78.48 \text{ N} \]

Free body: 30-kg block

\[ W_2 = (30 \text{ kg})(9.81 \text{ m/s}^2) = 294.3 \text{ N} \]
\[ N_2 = 196.2 \text{ N} + 294.3 \text{ N} = 490.5 \text{ N} \]
\[ F_2 = \mu_k N_2 = 0.3(490.5 \text{ N}) = 147.15 \text{ N} \]

\[ -\text{ } \Sigma F = 0: \quad P - F_1 - F_2 - T = 0 \]
\[ P = 78.48 \text{ N} + 196.2 \text{ N} + 78.48 \text{ N} = 353.2 \text{ N} \]

(b) Free body: Both blocks

Blocks move together

\[ W = (50 \text{ kg})(9.81 \text{ m/s}^2) = 490.5 \text{ N} \]

\[ +\text{ } \Sigma F = 0: \quad P - F = 0 \]
\[ P = \mu_k N = 0.3(490.5 \text{ N}) = 147.15 \text{ N} \]

\[ P = 196.2 \text{ N} \]
PROBLEM 8.23

A slender rod of length $L$ is lodged between peg $C$ and the vertical wall and supports a load $P$ at end $A$. Knowing that the coefficient of static friction between the peg and the rod is 0.15 and neglecting friction at the roller, determine the range of values of the ratio $L/a$ for which equilibrium is maintained.

SOLUTION

FBD rod:

Free-body diagram: For motion of $B$ impending upward:

$$\sum M_B = 0: \quad PL \sin \theta - N_C \left( \frac{a}{\sin \theta} \right) = 0$$

$$N_C = \frac{PL}{a \sin^2 \theta} \quad (1)$$

$$\sum F_y = 0: \quad N_C \sin \theta - \mu_s N_C \cos \theta - P = 0$$

$$N_C (\sin \theta - \mu \cos \theta) = P$$

Substitute for $N_C$ from Eq. (1), and solve for $a/L$.

$$\frac{a}{L} = \sin^2 \theta (\sin \theta - \mu_s \cos \theta) \quad (2)$$

For $\theta = 30^\circ$ and $\mu_s = 0.15$:

$$\frac{a}{L} = \sin^2 30^\circ (\sin 30^\circ - 0.15 \cos 30^\circ)$$

$$\frac{a}{L} = 0.09252 \quad \frac{L}{a} = 10.808$$

For motion of $B$ impending downward, reverse sense of friction force $F_C$. To do this we make $\mu_s = -0.15$ in Eq. (2).

Eq. (2):

$$\frac{a}{L} = \sin^2 30^\circ (\sin 30^\circ - (-0.15) \cos 30^\circ)$$

$$\frac{a}{L} = 0.15748 \quad \frac{L}{a} = 6.350$$

Range of values of $L/a$ for equilibrium:

$$6.35 \leq \frac{L}{a} \leq 10.81$$
PROBLEM 8.26

A 6.5-m ladder $AB$ leans against a wall as shown. Assuming that the coefficient of static friction $\mu_s$ is the same at $A$ and $B$, determine the smallest value of $\mu_s$ for which equilibrium is maintained.

SOLUTION

Free body: Ladder

Motion impending:

\[ F_A = \mu_s N_A \]
\[ F_B = \mu_s N_B \]

\[ \Sigma M_A = 0: \quad W(1.25 \text{ m}) - N_B(6 \text{ m}) - \mu_s N_B(2.5 \text{ m}) = 0 \]

\[ N_B = \frac{1.25W}{6 + 2.5\mu_s} \quad (1) \]

\[ \Sigma F_y = 0: \quad N_A + \mu_s N_B - W = 0 \]

\[ N_A = W - \mu_s N_B \]

\[ N_A = W - \frac{1.25\mu_s W}{6 + 2.5\mu_s} \quad (2) \]

\[ \Sigma F_x = 0: \quad \mu_s N_A - N_B = 0 \]

Substitute for $N_A$ and $N_B$ from Eqs. (1) and (2):

\[ \mu_s W - \frac{1.25\mu_s^3 W}{6 + 2.5\mu_s} = \frac{1.25W}{6 + 2.5\mu_s} \]

\[ 6\mu_s + 2.5\mu_s^3 - 1.25\mu_s^2 = 1.25 \]

\[ 1.25\mu_s^2 + 6\mu_s - 1.25 = 0 \]

\[ \mu_s = 0.2 \]

and

\[ \mu_s = -5 \quad \text{(Discard)} \]

\[ \mu_s = 0.200 \]
PROBLEM 8.39

Knowing that the coefficient of static friction between the collar and the rod is 0.35, determine the range of values of \( P \) for which equilibrium is maintained when \( \theta = 50^\circ \) and \( M = 20 \text{ N m} \).

SOLUTION

Free body member \( AB \):

\( BC \) is a two-force member.

\[ \Sigma M_A = 0: \quad 20 \text{ N m} - F_{BC} \cos 50^\circ (0.1 \text{ m}) = 0 \]

\[ F_{BC} = 311.145 \text{ N} \]

Motion of \( C \) impeding upward:

\[ \Sigma F_x = 0: \quad (311.145 \text{ N}) \cos 50^\circ - N = 0 \]

\[ N = 200 \text{ N} \]

\[ \Sigma F_y = 0: \quad (311.145 \text{ N}) \sin 50^\circ - P - (0.35)(200 \text{ N}) = 0 \]

\[ P = 168.351 \text{ N} \]

Motion of \( C \) impeding downward:

\[ \Sigma F_x = 0: \quad (311.145 \text{ N}) \cos 50^\circ - N = 0 \]

\[ N = 200 \text{ N} \]

\[ \Sigma F_y = 0: \quad (311.145 \text{ N}) \sin 50^\circ - P + (0.35)(200 \text{ N}) = 0 \]

\[ P = 308.35 \text{ N} \]

Range of \( P \):

\[ 168.4 \text{ N} \leq P \leq 308 \text{ N} \]