Homework \#3 Solution

SOLUTION

$$
\begin{aligned}
& \text { Free-Body Diagram } \\
& \pm \Sigma F_{x}=0: \quad T_{A C B} \cos 15^{\circ}-T_{A C B} \cos 25^{\circ}-(80 \mathrm{~N}) \cos 25^{\circ}=0 \\
& +\mid \Sigma F_{y}=0: \quad(1216.15 \mathrm{~N}) \sin 15^{\circ}+(1216.15 \mathrm{~N}) \sin 25^{\circ} \\
& +(80 \mathrm{~N}) \sin 25^{\circ}-W=0 \\
& W=862.54 \mathrm{~N}
\end{aligned}
$$

(a) $\quad W=863 \mathrm{~N}$
(b) $T_{A C B}=1216 \mathrm{~N}$

SOLUTION

Free-Body Diagram: Pulley A

$$
\begin{aligned}
\pm \Sigma F_{x} & =0:-2 P\left(\frac{5}{\sqrt{281}}\right)+P \cos \alpha=0 \\
\cos \alpha & =0.59655 \\
\alpha & = \pm 53.377^{\circ}
\end{aligned}
$$

For $\alpha=+53.377^{\circ}$:
$+\Sigma F_{y}=0: \quad 2 P\left(\frac{16}{\sqrt{281}}\right)+P \sin 53.377^{\circ}-1962 \mathrm{~N}=0$

$$
\mathbf{P}=724 \mathrm{~N}<53.4^{\circ}
$$

For $\alpha=-53.377^{\circ}$:
$+\Sigma F_{y}=0: \quad 2 P\left(\frac{16}{\sqrt{281}}\right)+P \sin \left(-53.377^{\circ}\right)-1962 \mathrm{~N}=0$

$$
\mathbf{P}=1773 \times 53.4^{\circ}
$$

PROBLEM 2.69

A load \mathbf{Q} is applied to the pulley C, which can roll on the cable $A C B$. The pulley is held in the position shown by a second cable $C A D$, which passes over the pulley A and supports a load \mathbf{P}. Knowing that $P=750 \mathrm{~N}$, determine (a) the tension in cable $A C B,(b)$ the magnitude of load \mathbf{Q}.

SOLUTION

Free-Body Diagram: Pulley C

(a) $\quad \pm \Sigma F_{x}=0: T_{A C B}\left(\cos 25^{\circ}-\cos 55^{\circ}\right)-(750 \mathrm{~N}) \cos 55^{\circ}=0$

Hence:
$T_{A C B}=1292.88 \mathrm{~N}$

$$
T_{A C B}=1293 \mathrm{~N}
$$

(b) $\quad+\Sigma F_{y}=0: T_{A C B}\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+(750 \mathrm{~N}) \sin 55^{\circ}-Q=0$ $(1292.88 \mathrm{~N})\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+(750 \mathrm{~N}) \sin 55^{\circ}-Q=0$
or

$$
Q=2219.8 \mathrm{~N} \quad Q=2220 \mathrm{~N}
$$

SOLUTION

See Problem 2.101 for the figure and analysis leading to the linear algebraic Equations (1), (2), and (3).

$$
\begin{align*}
-0.6 T_{A B}+0.32432 T_{A C} & =0 \tag{1}\\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P & =0 \tag{2}\\
0.56757 T_{A C}-0.50769 T_{A D} & =0 \tag{3}
\end{align*}
$$

From Eq. (1):

$$
T_{A B}=0.54053 T_{A C}
$$

From Eq. (3):

$$
T_{A D}=1.11795 T_{A C}
$$

Substituting for $T_{A B}$ and $T_{A D}$ in terms of $T_{A C}$ into Eq. (2) gives

$$
\begin{aligned}
&-0.8\left(0.54053 T_{A C}\right)-0.75676 T_{A C}-0.86154\left(1.11795 T_{A C}\right)+P=0 \\
& 2.1523 T_{A C}=P ; \quad P=800 \mathrm{~N} \\
& T_{A C}=\frac{800 \mathrm{~N}}{2.1523} \\
&=371.69 \mathrm{~N}
\end{aligned}
$$

Substituting into expressions for $T_{A B}$ and $T_{A D}$ gives

$$
\begin{aligned}
& T_{A B}=0.54053(371.69 \mathrm{~N}) \\
& T_{A D}=1.11795(371.69 \mathrm{~N})
\end{aligned}
$$

$$
T_{A B}=201 \mathrm{~N}, \quad T_{A C}=372 \mathrm{~N}, \quad T_{A D}=416 \mathrm{~N}
$$

PROBLEM 2.108

Three cables are connected at A, where the forces \mathbf{P} and \mathbf{Q} are applied as shown. Knowing that $P=1200 \mathrm{~N}$, determine the values of Q for which cable $A D$ is taut.

SOLUTION

We assume that $T_{A D}=0$ and write $\quad \Sigma \mathbf{F}_{A}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+Q \mathbf{j}+(1200 \mathrm{~N}) \mathbf{i}=0$

$$
\begin{aligned}
& \overrightarrow{A B}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
& \overrightarrow{A C}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \quad A C=1040 \mathrm{~mm} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) T_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=\left(-\frac{12}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) T_{A C}
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and setting each coefficient equal to ϕ gives:

$$
\begin{align*}
& \text { i: } \quad-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}+1200 \mathrm{~N}=0 \tag{1}\\
& \text { j: }-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+Q=0 \tag{2}\\
& \text { k: } \quad \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}=0 \tag{3}
\end{align*}
$$

Solving the resulting system of linear equations using conventional algorithms gives:

$$
\begin{aligned}
T_{A B} & =605.71 \mathrm{~N} \\
T_{A C} & =705.71 \mathrm{~N} \\
Q & =300.00 \mathrm{~N}
\end{aligned}
$$

$$
0 \leq Q<300 \mathrm{~N}
$$

Note: This solution assumes that Q is directed upward as shown ($Q \geq 0$), if negative values of Q are considered, cable $A D$ remains taut, but $A C$ becomes slack for $Q=-460 \mathrm{~N}$.

PROBLEM 2.123

A container of weight W is suspended from ring A. Cable BAC passes through the ring and is attached to fixed supports at B and C. Two forces $\mathbf{P}=P \mathbf{i}$ and $\mathbf{Q}=Q \mathbf{k}$ are applied to the ring to maintain the container in the position shown. Knowing that $W=376 \mathrm{~N}$, determine P and Q. (Hint: The tension is the same in both portions of cable BAC.)

SOLUTION

$$
\begin{aligned}
\mathbf{T}_{A B} & =T \lambda_{A B} \\
& =T \frac{\frac{A B}{A B}}{} \\
& =T \frac{(-130 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}+(160 \mathrm{~mm}) \mathbf{k}}{450 \mathrm{~mm}} \\
& =T\left(-\frac{13}{45} \mathbf{i}+\frac{40}{45} \mathbf{j}+\frac{16}{45} \mathbf{k}\right) \\
\mathbf{T}_{A C} & =T \lambda_{A C} \\
& =T \frac{\overline{A C}}{A C} \\
& =T \frac{(-150 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}+(-240 \mathrm{~mm}) \mathbf{k}}{490 \mathrm{~mm}} \\
& =T\left(-\frac{15}{49} \mathbf{i}+\frac{40}{49} \mathbf{j}-\frac{24}{49} \mathbf{k}\right) \\
\Sigma F & =0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{Q}+\mathbf{P}+\mathbf{W}=0
\end{aligned}
$$

Free-Body A:

Setting coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to zero:

$$
\begin{array}{lr}
\text { i: }-\frac{13}{45} T-\frac{15}{49} T+P=0 & 0.59501 T=P \\
\text { j: }+\frac{40}{45} T+\frac{40}{49} T-W=0 & 1.70521 T=W \\
\text { k: }+\frac{16}{45} T-\frac{24}{49} T+Q=0 & 0.134240 T=Q \tag{3}
\end{array}
$$

SOLUTION

Free-Body Diagram of Rod $A B$:

$\underbrace{}_{x}$

$$
\begin{aligned}
x & =(9 \mathrm{in} .) \cos 65^{\circ} \\
& =3.8036 \mathrm{in} . \\
y & =(9 \mathrm{in} .) \sin 65^{\circ} \\
& =8.1568 \mathrm{in} .
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{F} & =F_{x} \mathbf{i}+F_{y} \mathbf{j} \\
& =\left(20 \mathrm{lb} \cos 25^{\circ}\right) \mathbf{i}+\left(-20 \mathrm{lb} \sin 25^{\circ}\right) \mathbf{j} \\
& =(18.1262 \mathrm{lb}) \mathbf{i}-(8.4524 \mathrm{lb}) \mathbf{j} \\
\mathbf{r}_{A / B} & =\overrightarrow{B A}=(-3.8036 \mathrm{in} .) \mathbf{i}+(8.1568 \mathrm{in} .) \mathbf{j} \\
\mathbf{M}_{B} & =\mathbf{r}_{A / B} \times \mathbf{F} \\
& =(-3.8036 \mathbf{i}+8.1568 \mathbf{j}) \times(18.1262 \mathbf{i}-8.4524 \mathbf{j}) \\
& =32.150 \mathbf{k}-147.852 \mathbf{k} \\
& =-115.702 \mathrm{lb}-\mathrm{in} .
\end{aligned}
$$

$$
\left.\mathbf{M}_{B}=115.7 \mathrm{lb}-\mathrm{in} .\right)
$$

SOLUTION

Free-Body Diagram of Rod AB:

$$
\begin{aligned}
Q & =(20 \mathrm{lb}) \cos 50^{\circ} \\
& =12.8558 \mathrm{lb} \\
M_{B} & =Q(9 \mathrm{in} .) \\
& =(12.8558 \mathrm{lb})(9 \mathrm{in} .) \\
& =115.702 \mathrm{lb}-\mathrm{in} .
\end{aligned}
$$

$$
\left.\mathbf{M}_{B}=115.7 \mathrm{lb}-\mathrm{in} .\right)
$$

SOLUTION

Free-Body Diagram of Rod $A B$:

$$
\alpha=\theta-25^{\circ}
$$

$$
Q=(20 \mathrm{lb}) \cos \theta
$$

and

$$
M_{B}=(Q)(9 \mathrm{in} .)
$$

Therefore, $\quad 120 \mathrm{lb}-\mathrm{in} .=(20 \mathrm{lb})(\cos \theta)(9 \mathrm{in}$.

$$
\cos \theta=\frac{120 \mathrm{lb}-\mathrm{in} .}{180 \mathrm{lb}-\mathrm{in} .}
$$

or

$$
\theta=48.190^{\circ}
$$

Therefore,

$$
\alpha=48.190^{\circ}-25^{\circ}
$$

$$
\alpha=23.2^{\circ}
$$

Bonus

PROBLEM 2.112

A transmission tower is held by three guy wires attached to a pin at A and anchored by bolts at B, C, and D. If the tension in wire $A C$ is 920 lb , determine the vertical force \mathbf{P} exerted by the tower on the pin at A.

SOLUTION

See Problem 2.111 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{3}{7} T_{A B}+\frac{6}{23} T_{A C}+\frac{2}{11} T_{A D} & =0 \tag{1}\\
-\frac{6}{7} T_{A B}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+P & =0 \tag{2}\\
\frac{2}{7} T_{A B}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D} & =0 \tag{3}
\end{align*}
$$

Substituting for $T_{A C}=920 \mathrm{lb}$ in Equations (1), (2), and (3) above and solving the resulting set of equations using conventional algorithms gives:

$$
\begin{align*}
-\frac{3}{7} T_{A B}+240 \mathrm{lb}+\frac{2}{11} T_{A D} & =0 \\
-\frac{6}{7} T_{A B}-720 \mathrm{lb}-\frac{9}{11} T_{A D}+P & =0 \\
\frac{2}{7} T_{A B}+520 \mathrm{lb}-\frac{6}{11} T_{A D} & =0
\end{align*}
$$

Solving,

$$
\begin{aligned}
T_{A B} & =1240.00 \mathrm{lb} \\
T_{A D} & =1602.86 \mathrm{lb} \\
P & =3094.3 \mathrm{lb}
\end{aligned}
$$

$$
P=3090 \mathrm{lb}
$$

