

PROBLEM3.70

Two 80-N forces are applied as shown to the comers B and D of a rectangular plate. (a) Determine the moment of the couple formed bythe two forces by resolving each force into horizo ntal and vertical components and adding the moments of the two resulting couples. (b) Use the result obtained to determine the perpendicular distance be tween lines $B E$ and $D F$.

SOLUTION

(a) Resolving forces into components:

$$
\begin{aligned}
P & =(80 \mathrm{~N}) \sin 50^{-}=61.284 \mathrm{~N} \\
Q & =(80 \mathrm{~N}) \cos 50^{-}=51.423 \mathrm{~N} \\
M & =(51.423 \mathrm{~N})(0.5 \mathrm{~m})-(61.284 \mathrm{~N})(0.3 \mathrm{~m}) \\
& =7.3263 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

1111111111111

$$
\mathbf{M}=7.33 \mathrm{~N} \cdot \mathrm{~m})
$$

(b) Distance between lines $B E$ and $D F$
$\mathbf{M}=F d$
or

$$
\begin{aligned}
& 7.3263 \mathrm{~N} \cdot \mathrm{~m}=(80 \mathrm{~N}) d \\
& d=0.091579 \mathrm{~m}
\end{aligned}
$$

SOLUTION

Replace the couple in the $A B C D$ plane with two couples P and Q shown:

$$
\begin{aligned}
& P=(50 \mathrm{~N}) \frac{C D}{C G}=(50 \mathrm{~N})\left(\frac{160 \mathrm{~mm}}{200 \mathrm{~mm}}\right)=40 \mathrm{~N} \\
& Q=(50 \mathrm{~N}) \frac{C F}{C G}=(50 \mathrm{~N})\left(\frac{120 \mathrm{~mm}}{200 \mathrm{~mm}}\right)=30 \mathrm{~N}
\end{aligned}
$$

Couple vector $\mathbf{M}_{\mathbf{1}}$ perpendicular to plane $A B C D$:

$$
+) M_{1}=(40 \mathrm{~N})(0.24 \mathrm{~m})-(30 \mathrm{~N})(0.16 \mathrm{~m})=4.80 \mathrm{~N} \cdot \mathrm{~m}
$$

Couple vector \mathbf{M}_{2} in the $x y$ plane:

$$
\begin{aligned}
+) M_{2} & =-(12.5 \mathrm{~N})(0.192 \mathrm{~m})=-2.40 \mathrm{~N} \cdot \mathrm{~m} \\
\tan \theta & =\frac{144 \mathrm{~mm}}{192 \mathrm{~mm}} \quad \theta=36.870^{\circ} \\
\mathbf{M}_{1} & =\left(4.80 \cos 36.870^{\circ}\right) \mathbf{j}+\left(4.80 \sin 36.870^{\circ}\right) \mathbf{k} \\
& =3.84 \mathbf{j}+2.88 \mathbf{k} \\
\mathbf{M}_{2} & =-2.40 \mathbf{j} \\
\mathbf{M} & =\mathbf{M}_{1}+\mathbf{M}_{2}=1.44 \mathbf{j}+2.88 \mathbf{k} \\
& \mathbf{M}=3.22 \mathrm{~N} \cdot \mathbf{m} ; \theta_{x}=90.0^{\circ}, \theta_{v}=53.1^{\circ}, \theta_{\mathrm{t}}=36.9^{\circ}
\end{aligned}
$$

The angles in the solution are wrong (they don't take into account M_{2}. The correct answer is $\theta_{x}=90^{\circ}$, $\theta_{y}=63.4^{\circ}, \theta_{z}=26.6^{\circ}$

PROBLEM3.89

Three control rods attached to a lever $A B C$ exert on it the forces shown. (a) Replace the three forces with an equivalent force-couple system at B. (b) Determine the single force that is equivalent to the force-couple system obtained in Part a, and specify its point of application on the lever.

SOLUTION

(a)

First note that the two $20-\mathrm{lb}$ forces form A couple. Then
where

$$
\mathbf{F}=48 \mathrm{lb} \angle \theta
$$

and

$$
\begin{aligned}
M & =\Sigma M_{F} \\
& =(30 \mathrm{in} .)(48 \mathrm{Ib}) \cos 55^{\circ}-(70 \mathrm{in} .)(20 \mathrm{Ib}) \cos 20^{\circ} \\
& =-489.62 \mathrm{Ib} \cdot \mathrm{in}
\end{aligned}
$$

The equivalent force-couple system at B is

$$
\left.\mathbf{F}=48.0 \mathrm{lb}<65.0^{\circ} ; \quad \mathbf{M}=490 \mathrm{lb} \cdot \mathrm{in} .\right)
$$

(b) The single equivalent force \mathbf{F}^{\prime} is equal to \mathbf{F}. Futher, since the sense of \mathbf{M} is clockwise, \mathbf{F}^{\prime} must be applied between A and B. For equivalence.

$$
\Sigma M_{B}: M=-a F^{\prime} \cos 55^{\circ}
$$

where a is the distance from B to the point of application of \mathbf{F}. Then
$-489.62 \mathrm{lb} \cdot$ in. $=-a(48.0 \mathrm{lb}) \cos 55^{\circ}$
or

$$
a=17.78 \mathrm{in} .
$$

$$
\mathbf{F}^{\prime}=48.0 \mathrm{lb}<65.0^{\circ}
$$

SOLUTION

We have

$$
d_{d s}=\sqrt{(18)^{2}+(-14)^{2}+(-3)^{2}}=23 \mathrm{in} .
$$

Then

$$
\begin{aligned}
\mathbf{F} & =\frac{46 \mathrm{lb}}{23}(18 \mathbf{i}-14 \mathbf{j}-3 \mathbf{k}) \\
& =(36 \mathrm{lb}) \mathbf{i}-(28 \mathrm{lb}) \mathbf{j}-(6 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Also $d_{\text {HL }}=\sqrt{(-45)^{2}+(0)^{2}+(-28)^{2}}=53 \mathrm{in}$.

Then

$$
\begin{aligned}
\mathbf{M} & =\frac{2120 \mathrm{lb} \cdot \mathrm{in} .}{53}(-45 \mathbf{i}-28 \mathbf{k}) \\
& =-(1800 \mathrm{lb} \cdot \mathrm{in}) \mathbf{i}-(1120 \mathrm{lb} \cdot \mathrm{in} .) \mathbf{k}
\end{aligned}
$$

Now
$\mathbf{M}^{\mathbf{r}}=\mathbf{M}+\mathbf{r}_{\text {AM, }} \times \mathbf{F}$
where
$\mathbf{r}_{\text {AMs }}=(45 \mathrm{in}.) \mathbf{i}+(14 \mathrm{in}) \mathbf{j}$

Then

$$
\begin{aligned}
\mathbf{M}^{\mathbf{r}} & =(-1800 \mathbf{i}-1120 \mathbf{k})+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
45 & 14 & 0 \\
36 & -28 & -6
\end{array}\right| \\
& =(-1800 \mathbf{i}-1120 \mathbf{k})+\{[(14)(-6)] \mathbf{i}+[-(45)(-6)] \mathbf{j}+[(45)(-28)-(14)(36)] \mathbf{k}\} \\
& =(-1800-84) \mathbf{i}+(270) \mathbf{j}+(-1120-1764) \mathbf{k} \\
& =-(1884 \mathrm{lb} \cdot \text { in. }) \mathbf{i}+(270 \mathrm{lb} \cdot \text { in. }) \mathbf{j}-(2884 \mathrm{lb} \cdot \text { in }) \mathbf{k} \\
& =-(157 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{i}+(22.5 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}-(240 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k}
\end{aligned}
$$

The equivalent force-couple system at H is

$$
\mathbf{F}^{r}=(36.0 \mathrm{lb}) \mathbf{i}-(28.0 \mathrm{lb}) \mathbf{j}-(6.00 \mathrm{lb}) \mathbf{k}
$$

$$
\mathbf{M}^{\mathbf{r}}=-(157.0 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{i}+(22.5 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}-(240 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k}
$$

PROBLEM3.101

A 3-m-long beam is subjected to a variety of loadings. (a) Replace each loading with an equivalent forcecouple system at end A of the beam. (b) Which of the loadings are equivalent?

(a)

(p)

(b)

(f)
(e)

(g)

(a)

(6)

SOLUTION

(a)
(a) We have
$\Sigma F_{y}: \quad-300 \mathrm{~N}-200 \mathrm{~N}=R_{ \pm}$
and
$\Sigma M_{A}:-400 \mathrm{~N} \cdot \mathrm{~m}-(200 \mathrm{~N})(3 \mathrm{~m})=M_{a}$
(b) We have
$\Sigma F_{y}: \quad 200 \mathrm{~N}+300 \mathrm{~N}=R_{\mathrm{o}}$
$\Sigma M_{A}:-400 \mathrm{~N} \cdot \mathrm{~m}+(300 \mathrm{~N})(3 \mathrm{~m})=M_{0}$
and
(c) We have
$\Sigma F_{y}: \quad-200 \mathrm{~N}-300 \mathrm{~N}=R_{c}$
and
$\sum M_{A}: \quad 400 \mathrm{~N} \cdot \mathrm{~m}-(300 \mathrm{~N})(3 \mathrm{~m})=M_{c}$

or $\quad \mathbf{M}_{\mathbf{a}}=1000 \mathrm{~N} \cdot \mathrm{~m}$)
or $\mathbf{M}_{0}=500 \mathrm{~N} \cdot \mathrm{~m}$)
or $\mathbf{R}_{e}=500 \mathrm{~N}$
or $\mathbf{M}_{c}=500 \mathrm{~N} \cdot \mathrm{~m}$)

PROBLEH 3.101 (Continued)

(d) We have
$\Sigma F_{y}: \quad-500 \mathrm{~N}=R_{d}$

$$
\text { or } \mathbf{R}_{\text {d }}=500 \mathrm{~N} \downarrow
$$

and $\quad \Sigma M_{A}: 400 \mathrm{~N} \cdot \mathrm{~m}-(500 \mathrm{~N} \times 3 \mathrm{~m})=M_{0}$
or $\mathbf{M a}_{\alpha}=1100 \mathrm{~N} \cdot \mathrm{~m}$)
(e) We have
$\Sigma F_{y}: \quad 300 \mathrm{~N}-800 \mathrm{~N}=R_{z}$

$$
\text { or } \mathbf{R}_{e}=500 \mathrm{~N} \downarrow
$$

and $\quad \Sigma M_{d}: 400 \mathrm{~N} \cdot \mathrm{~m}+1000 \mathrm{~N} \cdot \mathrm{~m}-(800 \mathrm{~N})(3 \mathrm{~m})=M_{e}$ or $\mathbf{M}_{e}=1000 \mathrm{~N} \cdot \mathrm{~m}$)
(f) We have
$\Sigma F_{y}: \quad-300 \mathrm{~N}-200 \mathrm{~N}=R_{J}$
or $\mathbf{R}_{J}=500 \mathrm{~N} \downarrow$
and $\quad \Sigma M_{A}: 400 \mathrm{~N} \cdot \mathrm{~m}-(200 \mathrm{~N})(3 \mathrm{~m})=M_{J}$ or

$$
\left.\mathbf{M}_{J}=200 \mathrm{~N} \cdot \mathrm{~m}\right)
$$

(g) We have
$\Sigma F_{y}: \quad-800 \mathrm{~N}+300 \mathrm{~N}=R_{\mathrm{E}}$
or $\mathbf{R}_{\mathbf{t}}=500 \mathrm{~N} \downarrow$
and
$\sum M_{A}: \quad 1000 \mathrm{~N} \cdot \mathrm{~m}+400 \mathrm{~N} \cdot \mathrm{~m}+(300 \mathrm{~N})(3 \mathrm{~m})=M_{\mathrm{E}}$
or $\mathbf{M}_{\mathrm{t}}=2300 \mathrm{~N} \cdot \mathrm{~m}$)
(h) We have
$\Sigma F_{y}: \quad-250 \mathrm{~N}-250 \mathrm{~N}=R_{\mathrm{h}}$
and
$\Sigma M_{d}: \quad 1000 \mathrm{~N} \cdot \mathrm{~m}+400 \mathrm{~N} \cdot \mathrm{~m}-(250 \mathrm{~N})(3 \mathrm{~m})=M_{d}$

$$
\text { or } \left.\mathbf{M}_{n}=650 \mathrm{~N} \cdot \mathrm{~m}\right) 4
$$

(b) Therefore, loadings (a) and (e) are equivalent.

PROBLEM3. 104

Five separate force-couple systems act at the comers of a piece of sheet metal, which has been bent into the shape shown. Determine which of these syetems is equivalent to a force $\mathbf{F}=(10 \mathrm{lb}) \mathbf{i}$ and a couple of moment $\mathbf{M}=(15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}+(15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k}$ located at the origin.

SOLUTION

First note that the force-couple system at F cannot be equivalent because of the direction of the force [The force of the other four systems is $(10 \mathrm{lb}) \mathbf{1}$. Next, move each of the systems to the origin O; the forces re main unchanged.

$$
\begin{aligned}
A: \quad \mathbf{M}_{d}=\Sigma \mathbf{M}_{O}= & (5 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}+(15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k}+(2 \mathrm{ft}) \mathbf{k} \times(10 \mathrm{lb}) \mathbf{i} \\
= & (25 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}+(15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k} \\
D: \quad \mathbf{M}_{D}=\Sigma \mathbf{M}_{O}= & -(5 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}+(25 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k} \\
& +[(4.5 \mathrm{ft}) \mathbf{i}+(1 \mathrm{ft}) \mathbf{j}+(2 \mathrm{ft}) \mathbf{k}] \times 10 \mathrm{lb}) \mathbf{i} \\
= & (15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{i}+(15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k} \\
G: \quad \mathbf{M}_{\square}=\Sigma \mathbf{M}_{O}= & (15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{i}+(15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j} \\
I: \quad \mathbf{M}_{1}=\Sigma \mathbf{M}_{1}= & (15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}-(5 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k} \\
& +[(4.5 \mathrm{ft}) \mathbf{i}+(1 \mathrm{ft}) \mathbf{j} \times(10 \mathrm{lb}) \mathbf{j} \\
= & (15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}-(15 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k}
\end{aligned}
$$

The equivalent force-couple system is the system at comer D.

PROBLEM3.127

Three children are standing on a $5 \times 5-\mathrm{m}$ raft. If the weights of the children at Points A, B, and C are 375 N , 260 N , and 400 N , respectively, dete rmine the magnitude and the point of application of the resultant of the three weights.

SOLUTION

We have

$$
\Sigma \mathbf{F}: \quad \mathbf{F}_{d}+\mathbf{F}_{E}+\mathbf{F}_{\mathrm{c}}=\mathbf{R}
$$

$$
-(375 \mathrm{~N}) \mathbf{j}-(260 \mathrm{~N}) \mathbf{j}-(400 \mathrm{~N}) \mathbf{j}=\mathbf{R}
$$

$$
-(1035 \mathrm{~N}) \mathbf{j}=\mathbf{R}
$$

$$
\text { or } R=1035 \mathrm{~N}
$$

We have
$\sum M_{f}: \quad F_{A}\left(z_{H}\right)+F_{B}\left(z_{B}\right)+F_{C}\left(z_{\mathrm{E}}\right)=R\left(z_{D}\right)$
$(375 \mathrm{~N})(3 \mathrm{~m})+(260 \mathrm{~N})(0.5 \mathrm{~m})+(400 \mathrm{~N})(4.75 \mathrm{~m})=(1035 \mathrm{~N})\left(\mathrm{z}_{\mathrm{D}}\right)$
$z_{\mathrm{D}}=3.0483 \mathrm{~m}$
or $z_{D}=3.05 \mathrm{~m}$
We have

$$
\Sigma M M_{E}: \quad F_{A}\left(x_{H}\right)+F_{F}\left(x_{E}\right)+F_{\Sigma}\left(x_{\mathrm{E}}\right)=R\left(x_{D}\right)
$$

$375 \mathrm{~N}(1 \mathrm{~m})+(260 \mathrm{~N})(1.5 \mathrm{~m})+(400 \mathrm{~N})(4.75 \mathrm{~m})=(1035 \mathrm{~N})\left(x_{\mathrm{D}}\right)$
$x_{D}=2.5749 \mathrm{~m}$
or $x_{D}=2.57 \mathrm{~m}$

PROBLEM3.128

Three children are standing on a $5 \times 5-\mathrm{mraft}$. The weights of the children at Points A, B, and C are 375 N , 260 N , and 400 N , respectively. If a fourth child of weight 425 N climbs onto the raft, determine where she should stand if the other children remain in the positions shown and the line of action of the resultant of the four weights is to pass through the center of the raft.

SOLUTION

We have

$$
\Sigma \mathbf{F}: \quad \mathbf{F}_{A}+\mathbf{F}_{E}+\mathbf{F}_{\mathrm{c}}=\mathbf{R}
$$

$$
-(375 \mathrm{~N}) \mathbf{j}-(260 \mathrm{~N}) \mathbf{j}-(400 \mathrm{~N}) \mathbf{j}-(425 \mathrm{~N}) \mathbf{j}=\mathbf{R}
$$

$$
\mathbf{R}=-(1460 \mathrm{~N}) \mathbf{j}
$$

We have
$\sum M_{f}: \quad F_{H}\left(z_{H}\right)+F_{B}\left(z_{B}\right)+F_{C}\left(z_{C}\right)+F_{D}\left(z_{D}\right)=R\left(z_{H}\right)$
$(375 \mathrm{~N})(3 \mathrm{~m})+(260 \mathrm{~N})(0.5 \mathrm{~m})+(400 \mathrm{~N})(4.75 \mathrm{~m})$
$+(425 \mathrm{~N})\left(z_{\mathrm{D}}\right)=(1460 \mathrm{~N})(2.5 \mathrm{~m})$
$z_{D}=1.16471 \mathrm{~m} \quad$ or $\quad z_{D}=1.165 \mathrm{~m}$
We have
$\sum M_{E}: \quad F_{A}\left(x_{A}\right)+F_{B}\left(x_{B}\right)+F_{C}\left(x_{E}\right)+F_{D}\left(x_{D}\right)=\mathcal{R}\left(x_{H}\right)$
$(375 \mathrm{~N})(1 \mathrm{~m})+(260 \mathrm{~N})(1.5 \mathrm{~m})+(400 \mathrm{~N})(4.75 \mathrm{~m})$
$+(425 \mathrm{~N})\left(x_{\mathrm{D}}\right)=(1460 \mathrm{~N})(2.5 \mathrm{~m})$
$x_{\mathrm{D}}=2.3235 \mathrm{~m}$

