Homework \#8 Solution

SOLUTION

First note that symmetry implies

$$
\begin{aligned}
& \text { First note that symmetry implies } \\
& \text { For the element (EL) shown, } \\
& \qquad \begin{aligned}
& \bar{y}_{E L}=\frac{2 r}{\pi} \text { (Figure 5.8B) } \\
& \qquad d A=\pi r d r
\end{aligned} \\
& \qquad A=\int d A=\int_{r_{1}}^{r_{2}} \pi r d r=\pi\left(\frac{r^{2}}{2}\right)_{r_{1}}^{r_{2}}=\frac{\pi}{2}\left(r_{2}^{2}-r_{1}^{2}\right) \\
& \text { Then } \\
& \text { and } \quad \int \bar{y}_{E l} d A=\int_{1}^{r_{2}} \frac{2 r}{\pi}(\pi r d r)=2\left(\frac{1}{3} r^{3}\right)_{r_{1}}^{r_{2}}=\frac{2}{3}\left(r_{2}^{3}-r_{1}^{3}\right) \\
& \text { So } \quad \bar{y} A=\int \bar{y}_{E L} d A: \bar{y}\left[\frac{\pi}{2}\left(r_{2}^{2}-r_{1}^{2}\right)\right]=\frac{2}{3}\left(r_{2}^{3}-r_{1}^{3}\right)
\end{aligned}
$$

For the element (EL) shown,

SOLUTION

$$
\begin{aligned}
& y_{1}=k_{1} x^{2} \quad \text { but } \quad b=k_{1} a^{2} \quad y_{1}=\frac{b}{a^{2}} x^{2} \\
& y_{2}=k_{2} x^{4} \quad \text { but } b=k_{2} a^{4} \quad y_{2}=\frac{b}{a^{4}} x^{4} \\
& d A=\left(y_{2}-y_{1}\right) d x=\frac{b}{a^{2}}\left(x^{2}-\frac{x^{4}}{a^{2}}\right) d x \\
& \bar{x}_{E L}=x \\
& \bar{y}_{E L}=\frac{1}{2}\left(y_{1}+y_{2}\right) \\
& =\frac{b}{2 a^{2}}\left(x^{2}+\frac{x^{4}}{a^{2}}\right) \\
& A=\int d A=\frac{b}{a^{2}} \int_{0}^{a}\left(x^{2}-\frac{x^{4}}{a^{2}}\right) d x \\
& =\frac{b}{a^{2}}\left[\frac{x^{3}}{3}-\frac{x^{5}}{5 a^{2}}\right]_{0}^{a} \\
& =\frac{2}{15} b a \\
& \int \bar{x}_{E L} d A=\int_{0}^{a} x \frac{b}{a^{2}}\left(x^{2}-\frac{x^{4}}{a^{2}}\right) d x \\
& =\frac{b}{a^{2}} \int_{0}^{a}\left(x^{3}-\frac{x^{5}}{a^{2}}\right) d x \\
& =\frac{b}{a^{2}}\left[\frac{x^{4}}{4}-\frac{x^{6}}{6 a^{2}}\right]_{0}^{a} \\
& =\frac{1}{12} a^{2} b \\
& \int \bar{y}_{z L} d A=\int_{0}^{a} \frac{b}{2 a^{2}}\left(x^{2}+\frac{x^{4}}{a^{2}}\right) \frac{b}{a^{2}}\left(x^{2}-\frac{x^{4}}{a^{2}}\right) d x \\
& =\frac{b^{2}}{2 a^{4}} \int_{0}^{a}\left(x^{4}-\frac{x^{8}}{a^{4}}\right) d x \\
& =\frac{b^{2}}{2 a^{4}}\left[\frac{x^{5}}{5}-\frac{x^{9}}{9 a^{4}}\right]_{0}^{a}=\frac{2}{45} a b^{2} \\
& \bar{x} A=\int \bar{x}_{B L} d A: \quad \bar{x}\left(\frac{2}{15} b a\right)=\frac{1}{12} a^{2} b \\
& \bar{x}=\frac{5}{8} a \\
& \bar{y} A=\int \bar{y}_{E L} d A: \quad \bar{y}\left(\frac{2}{15} b a\right)=\frac{2}{45} a b^{2} \\
& \bar{y}=\frac{1}{3} b
\end{aligned}
$$

SOLUTION

First note that symmetry implies

$$
\ddot{y}=b
$$

At

$$
x=a, \quad y=b
$$

$$
y_{1}: b=k a^{2} \quad \text { or } \quad k=\frac{b}{a^{2}}
$$

Then

$$
y_{1}=\frac{b}{a^{2}} x^{2}
$$

$$
y_{2}: \quad b=2 b-c a^{2}
$$

or

$$
c=\frac{b}{a^{2}}
$$

Then

$$
y_{2}=b\left(2-\frac{x^{2}}{a^{2}}\right)
$$

Now

$$
\begin{aligned}
d A & =\left(y_{2}-y_{1}\right) d x_{2}=\left[b\left(2-\frac{x^{2}}{a^{2}}\right)-\frac{b}{a^{2}} x^{2}\right] d x \\
& =2 b\left(1-\frac{x^{2}}{a^{2}}\right) d x
\end{aligned}
$$

and

$$
\bar{x}_{E L}=x
$$

Then

$$
A=\int d A \int_{0}^{a} 2 b\left(1-\frac{x^{2}}{a^{2}}\right) d x=2 b\left[x-\frac{x^{3}}{3 a^{2}}\right]_{0}^{a}=\frac{4}{3} a b
$$

and

$$
\begin{aligned}
\int_{E L} d A & =\int_{0}^{a} x\left[2 b\left(1-\frac{x^{2}}{a^{2}}\right) d x\right]=2 b\left[\frac{x^{2}}{2}-\frac{x^{4}}{4 a^{2}}\right]_{0}^{a}=\frac{1}{2} a^{2} b \\
\bar{x} A & =\int \bar{x}_{E I} d A: \quad \bar{x}\left(\frac{4}{3} a b\right)=\frac{1}{2} a^{2} b
\end{aligned} \bar{x}=\frac{3}{8} a
$$

PROBLEM 5.42

Determine by direct integration the centroid of the area shown.

SOLUTION

$$
\begin{aligned}
& \bar{x}_{E L}=x \quad \bar{y}_{E L}=\frac{1}{2} y \quad d A=y d x \\
& A=\int d A=\int_{0}^{L} h\left(1+\frac{x}{L}-2 \frac{x^{2}}{L^{2}}\right) d x=h\left[x+\frac{x^{2}}{2 L}-\frac{2}{3} \frac{x^{3}}{L^{2}}\right]_{0}^{L}=\frac{5}{6} h L \\
& \int x_{E L} d A=\int_{0}^{L} x h\left(1+\frac{x}{L}-2 \frac{x^{2}}{L^{2}}\right) d x=h \int_{0}^{L}\left(x+\frac{x^{2}}{L}-2 \frac{x^{3}}{L^{2}}\right) d x \\
& =h\left[\frac{x^{2}}{2}+\frac{1}{3} \frac{x^{3}}{L}-\frac{2}{4} \frac{x^{4}}{L^{2}}\right]_{10}^{L}=\frac{1}{3} h L^{2} \\
& \bar{x} A=\int x_{E L} d A: \quad \bar{x}\left(\frac{5}{6} h L\right)=\frac{1}{3} h L^{2} \\
& A=\frac{5}{6} h L \quad \vec{y}_{E L}=\frac{1}{2} y \quad y=h\left(1+\frac{x}{L}-2 \frac{x^{2}}{L^{2}}\right) \\
& \int \bar{y}_{E L} d A=\frac{1}{2} \int y^{2} d x=\frac{h^{2}}{2} \int_{0}^{L}\left(1+\frac{x}{L}-2 \frac{x^{2}}{L^{2}}\right)^{2} d x \\
& =\frac{h^{2}}{2} \int_{0}^{L}\left(1+\frac{x^{2}}{L^{2}}+4 \frac{x^{4}}{L^{4}}+2 \frac{x}{L}-4 \frac{x^{2}}{L^{2}}-4 \frac{x^{3}}{L^{3}}\right) d x \\
& =\frac{h^{2}}{2}\left[x+\frac{x^{3}}{3 L^{2}}+\frac{4 x^{5}}{5 L^{4}}+\frac{x^{2}}{L}-\frac{4 x^{3}}{3 L^{2}}-\frac{x^{4}}{L^{3}}\right]_{0}^{L}=\frac{4}{10} h^{2} L \\
& \bar{y} A=\int y_{E L} d A: \quad \bar{y}\left(\frac{5}{6} h L\right)=\frac{4}{10} h^{2} L \\
& \bar{y}=\frac{12}{25} h
\end{aligned}
$$

PROBLEM 5.45

A homogeneous wire is bent into the shape shown. Determine by direct integration the x coordinate of its centroid.

SOLUTION

First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line.

Now

$$
\bar{x}_{E L .}=r \cos \theta \text { and } d L=r d \theta
$$

$$
L=\int d L=\int_{\pi / 4}^{7 \pi / 4} r d \theta=r[\theta]_{\pi / 4}^{7 \pi / 4}=\frac{3}{2} \pi r
$$

and

$$
\begin{aligned}
\int \bar{x}_{E L} d L & =\int_{\pi / 4}^{7 \pi / 4} r \cos \theta(r d \theta) \\
& =r^{2}[\sin \theta]_{\pi / 4}^{\pi \pi / 4} \\
& =r^{2}\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right) \\
& =-r^{2} \sqrt{2}
\end{aligned}
$$

Thus

$$
\bar{x} L=\int \bar{x} d L: \quad \bar{x}\left(\frac{3}{2} \pi r\right)=-r^{2} \sqrt{2}
$$

$$
\bar{x}=-\frac{2 \sqrt{2}}{3 \pi} r
$$

PROBLEM 5.50

Determine the centroid of the area shown when $a=2 \mathrm{in}$.

SOLUTION

We have

$$
\begin{aligned}
& \bar{x}_{E L}=x \\
& \bar{y}_{E L}=\frac{1}{2} y=\frac{1}{2}\left(1-\frac{1}{x}\right)
\end{aligned}
$$

and

$$
d A=y d x=\left(1-\frac{1}{x}\right) d x
$$

Then

$$
A=\int d A=\int_{1}^{a}\left(1-\frac{1}{x}\right) \frac{d x}{2}=[x-\ln x]_{1}^{a}=(a-\ln a-1) \mathrm{in}^{2}
$$

and

$$
\begin{aligned}
& \int \bar{x}_{E L} d A=\int_{1}^{a} x\left[\left(1-\frac{1}{x}\right) d x\right]=\left[\frac{x^{2}}{2}-x\right]_{1}^{a}=\left(\frac{a^{2}}{2}-a+\frac{1}{2}\right) \mathrm{in}^{3} \\
& \begin{aligned}
\int \bar{y}_{E L} d A & =\int_{1}^{a} \frac{1}{2}\left(1-\frac{1}{x}\right)\left[\left(1-\frac{1}{x}\right) d x\right]=\frac{1}{2} \int_{1}^{a}\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right) d x \\
& =\frac{1}{2}\left[x-2 \ln x-\frac{1}{x}\right]_{1}^{a}=\frac{1}{2}\left(a-2 \ln a-\frac{1}{a}\right) \mathrm{in}^{3} \\
\bar{x} A & =\int \bar{x}_{E L} d A: \quad \bar{x}=\frac{\frac{a^{2}}{2}-a+\frac{1}{2}}{a-\ln a-1} \mathrm{in} . \\
\bar{y} A & =\int \bar{y}_{E L} d A: \quad \bar{y}=\frac{a-2 \ln a-\frac{1}{a}}{2(a-\ln a-1)} \mathrm{in} .
\end{aligned}
\end{aligned}
$$

Find \bar{x} and \bar{y} when $a=2 \mathrm{in}$.
We have

$$
\begin{array}{ll}
\bar{x}=\frac{\frac{1}{2}(2)^{2}-2+\frac{1}{2}}{2-\ln 2-1} & \text { or } \bar{x}=1.629 \mathrm{in} . \\
\bar{y}=\frac{2-2 \ln 2-\frac{1}{2}}{2(2-\ln 2-1)} & \text { or } \bar{y}=0.1853 \mathrm{in} .
\end{array}
$$

PROBLEM 5.77

Determine (a) the distance a so that the reaction at support B is minimum, (b) the corresponding reactions at the supports.

SOLUTION

(a)

We have

$$
\begin{aligned}
R_{\mathrm{I}} & =\frac{1}{2}(a \mathrm{~m})(1800 \mathrm{~N} / \mathrm{m})=900 a \mathrm{~N} \\
R_{\mathrm{II}} & =\frac{1}{2}[(4-a) \mathrm{m}](600 \mathrm{~N} / \mathrm{m})=300(4-a) \mathrm{N}
\end{aligned}
$$

Then

$$
+) \Sigma M_{A}=0:-\left(\frac{a}{3} \mathrm{~m}\right)(900 a \mathrm{~N})-\left(\frac{8+a}{3} \mathrm{~m}\right)[300(4-a) \mathrm{N}]+(4 \mathrm{~m}) B_{y}=0
$$

or

$$
\begin{equation*}
B_{y}=50 a^{2}-100 a+800 \tag{1}
\end{equation*}
$$

Then

$$
\frac{d B_{y}}{d a}=100 a-100=0
$$

$$
\text { or } a=1.000 \mathrm{~m}
$$

(b) From Eq. (1):

$$
B_{y}=50(1)^{2}-100(1)+800=750 \mathrm{~N}
$$

$$
\mathbf{B}=750 \mathrm{~N} \uparrow
$$

and

$$
\begin{aligned}
& \xrightarrow{ } \Sigma F_{x}=0: \quad A_{x}=0 \\
& +\dagger \Sigma F_{y}=0: \quad A_{y}-900(1) \mathrm{N}-300(4-1) \mathrm{N}+750 \mathrm{~N}=0
\end{aligned}
$$

or

$$
A_{y}=1050 \mathrm{~N}
$$

$$
\mathrm{A}=1050 \mathrm{~N} \uparrow
$$

PROBLEM 5.111

A mounting bracket for electronic components is formed from sheet metal of uniform thickness. Locate the center of gravity of the bracket.

SOLUTION

First, assume that the sheet metal is homogeneous so that the center of gravity of the bracket coincides with the centroid of the corresponding area. Then (see diagram)

$$
\begin{aligned}
\bar{z}_{V} & =2.25-\frac{4(0.625)}{3 \pi} \\
& =1.98474 \mathrm{in} . \\
A_{V} & =-\frac{\pi}{2}(0.625)^{2} \\
& =-0.61359 \mathrm{in}^{2}
\end{aligned}
$$

	A, in 2	\bar{x}, in.	\bar{y}, in.	\bar{z}, in.	$\bar{x} A$, in 3	$\bar{y} A$, in 3	$\bar{z} A$, in 3
I	$(2.5)(6)=15$	1.25	0	3	18.75	0	45
II	$(1.25)(6)=7.5$	2.5	-0.625	3	18.75	-4.6875	22.5
III	$(0.75)(6)=4.5$	2.875	-1.25	3	12.9375	-5.625	13.5
IV	$-\left(\frac{5}{4}\right)(3)=-3.75$	1.0	0	3.75	3.75	0	-14.0625
V	-0.61359	1.0	0	1.9847	0.61359	0	-1.21782
Σ	22.6364				46.0739	10.3125	65.7197

We have

$$
\begin{array}{rlr}
\bar{X} \Sigma A & =\Sigma \bar{X} A & \\
\bar{X}\left(22.6364 \mathrm{in}^{2}\right) & =46.0739 \mathrm{in}^{3} & \text { or } \quad \bar{X}=2.04 \mathrm{in} \\
\bar{Y} \Sigma A & =\Sigma \bar{y} A & \text { or } \bar{Y}=-0.456 \mathrm{in} . \\
\bar{Y}\left(22.6364 \mathrm{in}^{2}\right) & =-10.3125 \mathrm{in}^{3} & \text { or } \bar{Z}=2.90 \mathrm{in} \\
\bar{Z} \Sigma A & =\Sigma \bar{Z} A & \text { or }
\end{array}
$$

SOLUTION

First note that symmetry implics

$$
\begin{aligned}
& \bar{y}=0 \\
& \bar{z}=0
\end{aligned}
$$

Choose as the element of volume a disk of radius r and thickness $d x$. Then

$$
d V=\pi r^{2} d x, \quad x_{E L}=x
$$

Also

$$
\begin{aligned}
\int \bar{x}_{e l} d V & =\int_{0}^{h} x\left(\pi \frac{a^{2}}{h^{2 / 3}} x^{2 / 3} d x\right)=\pi \frac{a^{2}}{h^{2 / 3}}\left[\frac{3}{8} x^{8 / 3}\right]_{0}^{\pi} \\
& =\frac{3}{8} \pi a^{2} h^{2}
\end{aligned}
$$

Now

$$
\bar{x} V=\int \bar{x} d V: \quad \bar{x}\left(\frac{3}{5} \pi a^{2} h\right)=\frac{3}{8} \pi a^{2} h^{2}
$$

$$
\text { or } \bar{x}=\frac{5}{8} h
$$

$$
\begin{aligned}
& \text { Now } \\
& r=k x^{1 / 3} \\
& \text { so that } \\
& d V=\pi k^{2} x^{2 / 3} d x \\
& \text { at } x=h, y=a \text {, } \\
& a=k h^{1 / 3} \\
& \text { or } \\
& k=\frac{a}{h^{\sqrt{33}}} \\
& \text { Then } \\
& d V=\pi \frac{a^{2}}{h^{2 / 3}} x^{2 / 3} d x \\
& \text { and } \\
& V=\int_{0}^{n} \pi \frac{a^{2}}{h^{2 / 3}} x^{2 / 3} d x \\
& =\pi \frac{a^{2}}{h^{2 / 3}}\left[\frac{3}{5} x^{5 / 3}\right]_{0}^{h} \\
& =\frac{3}{5} \pi a^{2} h
\end{aligned}
$$

PROBLEM 5.126

Locate the centroid of the volume obtained by rotating the shaded area about the x-axis.

SOLUTION

First, note that symmetry implies

$$
\begin{aligned}
& \bar{y}=0 \\
& \bar{z}=0
\end{aligned}
$$

Choose as the element of volume a disk of radius r and thickness $d x$.
Then

$$
d V=\pi r^{2} d x, \quad \bar{x}_{E L}=x
$$

Now $r=1-\frac{1}{x}$ so that

$$
\begin{aligned}
d V & =\pi\left(1-\frac{1}{x}\right)^{2} d x \\
& =\pi\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right) d x
\end{aligned}
$$

Then

$$
\begin{aligned}
V & =\int_{1}^{3} \pi\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right) d x=\pi\left[x-2 \ln x-\frac{1}{x}\right]_{1}^{3} \\
& =\pi\left[\left(3-2 \ln 3-\frac{1}{3}\right)-\left(1-2 \ln 1-\frac{1}{1}\right)\right] \\
& =(0.46944 \pi) \mathrm{m}^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\int \tilde{x}_{E L} d V & =\int_{t}^{3} x\left[\pi\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right) d x\right]=\pi\left[\frac{x^{2}}{2}-2 x+\ln x\right]_{1}^{3} \\
& =\pi\left\{\left[\frac{3^{2}}{2}-2(3)+\ln 3\right]-\left[\frac{1^{3}}{2}-2(1)+\ln 1\right]\right\} \\
& =(1.09861 \pi) \mathrm{m}
\end{aligned}
$$

Now

$$
\overline{x V}=\int \bar{x}_{E L} d V: \quad \bar{x}\left(0.46944 \pi \mathrm{~m}^{3}\right)=1.09861 \pi \mathrm{~m}^{4}
$$

Bonus

SOLUTION

We have

$$
\begin{aligned}
& \bar{x}_{E L}=\frac{2}{3} r \cos \theta=\frac{2}{3} a e^{\theta} \cos \theta \\
& \bar{y}_{E L}=\frac{2}{3} r \sin \theta=\frac{2}{3} a e^{\theta} \sin \theta
\end{aligned}
$$

and

$$
d A=\frac{1}{2}(r)(r d \theta)=\frac{1}{2} a^{2} e^{2 \theta} d \theta
$$

Then

$$
\begin{aligned}
A & =\int d A=\int_{0}^{\pi} \frac{1}{2} a^{2} e^{2 \theta} d \theta=\frac{1}{2} a^{2}\left[\frac{1}{2} e^{2 \theta}\right]_{0}^{\pi} \\
& =\frac{1}{4} a^{2}\left(e^{2 \pi}-1\right) \\
& =133.623 a^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\int \bar{x}_{E L} d A & =\int_{0}^{\pi} \frac{2}{3} a e^{\theta} \cos \theta\left(\frac{1}{2} a^{2} e^{2 \theta} d \theta\right) \\
& =\frac{1}{3} a^{3} \int_{0}^{\pi} e^{3 \theta} \cos \theta d \theta
\end{aligned}
$$

To proceed, use integration by parts, with

$$
\begin{gathered}
u=e^{3 \theta} \quad \text { and } \quad d u=3 e^{3 \theta} d \theta \\
d v=\cos \theta d \theta \quad \text { and } \quad v=\sin \theta
\end{gathered}
$$

Then

$$
\int e^{3 \theta} \cos \theta d \theta=e^{3 \theta} \sin \theta-\int \sin \theta\left(3 e^{3 \theta} d \theta\right)
$$

Now let

$$
\begin{gathered}
u=e^{3 \theta} \text { then } d u=3 e^{3 \theta} d \theta \\
d v=\sin \theta d \theta, \text { then } \quad v=-\cos \theta
\end{gathered}
$$

Then

$$
\int e^{3 \theta} \cos \theta d \theta=e^{3 \theta} \sin \theta-3\left[-e^{3 \theta} \cos \theta-\int(-\cos \theta)\left(3 e^{3 \theta} d \theta\right)\right]
$$

PROBLEM 5.49* (Continued)

so that

$$
\begin{aligned}
\int e^{3 \theta} \cos \theta d \theta & =\frac{e^{3 \theta}}{10}(\sin \theta+3 \cos \theta) \\
\int x_{E Q} d A & =\frac{1}{3} a^{3}\left[\frac{e^{3 \theta}}{10}(\sin \theta+3 \cos \theta)\right]_{0}^{\pi} \\
& =\frac{a^{3}}{30}\left(-3 e^{3 \pi}-3\right)=-1239.26 a^{3}
\end{aligned}
$$

Also,

$$
\begin{aligned}
\int \bar{y}_{52} d A & =\int_{0}^{\pi} \frac{2}{3} a e^{\theta} \sin \theta\left(\frac{1}{2} a^{2} e^{2 \theta} d \theta\right) \\
& =\frac{1}{3} a^{3} \int_{0}^{\pi} e^{3 \theta} \sin \theta d \theta
\end{aligned}
$$

Use integration by parts, as above, with

$$
\begin{gathered}
u=e^{3 \theta} \quad \text { and } \quad d u=3 e^{3 \theta} d \theta \\
d v=\int \sin \theta d \theta \quad \text { and } \quad v=-\cos \theta
\end{gathered}
$$

Then

$$
\int e^{3 \theta} \sin \theta d \theta=-e^{3 \theta} \cos \theta-\int(-\cos \theta)\left(3 e^{3 \theta} d \theta\right)
$$

so that

$$
\begin{aligned}
\int e^{3 \theta} \sin \theta d \theta & =\frac{e^{3 \theta}}{10}(-\cos \theta+3 \sin \theta) \\
\int \bar{y}_{E L} d A & =\frac{1}{3} a^{3}\left[\frac{e^{3 \theta}}{10}(-\cos \theta+3 \sin \theta)\right]_{0}^{\pi} \\
& =\frac{a^{3}}{30}\left(e^{3 \pi}+1\right)=413.09 a^{3}
\end{aligned}
$$

Hence,

$$
\begin{array}{ll}
\bar{x} A=\int x_{E L} d A: \bar{x}\left(133.623 a^{2}\right)=-1239.26 a^{3} & \text { or } \bar{x}=-9.27 a \\
\bar{y} A=\int \bar{y}_{E L} d A: \bar{y}\left(133.623 a^{2}\right)=413.09 a^{3} & \text { or } \bar{y}=3.09 a
\end{array}
$$

