Facile electron-beam lithography technique for irregular and fragile substrates

Jiyoung Chang, Qin Zhou, and Alex Zettl

Citation: Applied Physics Letters 105, 173109 (2014); doi: 10.1063/1.4900505
View online: http://dx.doi.org/10.1063/1.4900505
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/105/17?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Long nanoscale gaps on III–V substrates by electron beam lithography
J. Vac. Sci. Technol. B 30, 06F305 (2012); 10.1116/1.4766881

Three-dimensional alignment with 10 nm order accuracy in electron-beam lithography on rotated sample for three-dimensional nanofabrication
J. Vac. Sci. Technol. B 26, 2529 (2008); 10.1116/1.2976600

Ultrahigh-resolution pattern using electron-beam lithography HF wet etching

Nanoscale resist morphologies of dense gratings using electron-beam lithography

In situ electron-beam lithography on GaAs substrates using a metal alkoxide resist
Facile electron-beam lithography technique for irregular and fragile substrates

Jiyoung Chang,1,2,3,a) Qin Zhou,1,2,3,a) and Alex Zettl1,2,3,b)

1Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720, USA

(Received 22 September 2014; accepted 15 October 2014; published online 29 October 2014)

A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900505]

Electron-beam (e-beam) lithography, a powerful technique for sub-micrometer feature fabrication, is widely used in material characterization,1 micro- or nano-electromechanical systems (MEMS or NEMS),2 and in bioengineering.3 A critical requirement for reliable sub-micrometer e-beam lithography is uniform coverage of the e-beam resist (typically polymethyl methacrylate (PMMA)) on the surface. Although spin-coating PMMA is the most common method to achieve uniform coverage of the e-beamresist,7 or even films of ice.8 The spray coating method is to facilitate vaporization during the coating process.5 Thermal evaporation equipment adds complexity and cost to the target substrate, making the process spin-free on the target substrate and allowing uniform-thickness PMMA on complex surfaces. Second, no special equipment or material is needed other than commercially available PMMA, a conventional photoresist spinner, a hot plate, Scotch® tape, and Kapton® tape. The direct and dry PMMA transfer method is simpler and cleaner than evaporated or spray-coating methods, yielding overall, a highly efficient e-beam lithography technique.

Fig. 1 schematically outlines key steps in the dry transfer PMMA process. First, clear Scotch® tape with adhesive on one side (bottom) is adhered to a glass slide (Fig. 1(a)). To insure a flat upper tape surface, any air bubbles are removed by driving them to tape edge with a razor blade. PMMA is then deposited onto the tape upper surface, and the slide is spun at 3000 rpm for 40 s. The slide is then baked at 150 °C for 3 min. The resulting PMMA film is approximately 200 nm thick. The cured PMMA film adheres only modestly to the upper surface of the Scotch® tape, and as described below can be easily peeled from it (this is not possible if the PMMA is directly spun on the glass). For this study, we employ PMMA 495PMMA A4 (microchem®) and developer 1:3 MIBK/IPA (microchem®). A proper thickness of the PMMA film is important for transfer. For instance, if PMMA A2 is used employing the same spin conditions, the PMMA film breaks while being peeled off. Based on our experiments, a PMMA film thickness over 200 nm is needed for reliable transfer of cm-scale films.

A transfer frame is prepared by attaching Kapton® tape (adhesive on one side only) on a different (bare) glass slide, followed by the cutting out of a circular or rectangular window from the tape. The Kapton® tape frame is then removed from the glass slide and pressed onto the glass slide supporting the spun PMMA. We find that before attaching the Kapton® frame on to the PMMA, it is beneficial to delineate via a razor blade the area of PMMA to be attached to the frame; this helps in the subsequent delamination of the

---

*a)J. Chang and Q. Zhou contributed equally to this work.

b)Author to whom correspondence should be addressed. Electronic mail: azettl@berkeley.edu
PMMA dry film. After the frame is attached onto the selected region of PMMA, the Kapton® frame is gently peeled-off together with the PMMA film, as outlined in Fig. 1(b). The Scotch® tape is left behind on the glass slide. The right panel of Fig. 1(b) shows a 3 mm by 3 mm size PMMA dry film suspended over a Kapton® frame. The PMMA suspended in the frame is now ready to be transferred to the target substrate such as cylindrical wire, suspended beams or even sharp edge (Fig. 1(c)). Once the film is transferred, baking the substrate with its PMMA overlay on a hot plate at 150 °C for 1 min allows the PMMA film to conform to the substrate topography and enhances its adhesion to the substrate. The transferrable size of PMMA film is dependent upon the intrinsic mechanical strength of the dry PMMA film and the adhesion between the PMMA dry film and the Kapton® frame. As noted earlier, dry films thinner than 200 nm do not reliably peel off. We consistently and easily transfer films 1 cm by 1 cm using 200 nm thick PMMA A4 film.

We demonstrate three specific embodiments of the dry transfer PMMA technique. The first is fine-feature metal patterning around the sharp corner, i.e., continuously on the top and the cleaved side edge (i.e., side face), of a silicon chip. In general, the side face of the chip is not an easy location to perform e-beam lithography due to aforementioned edge-bead effects (indeed, spin-coating fails miserably here). However, the thin cleaved side face of a silicon chip, which can be atomically flat when properly prepared, may be an attractive patterning area. For example, the read/write magnetic head slider in hard disk drives is fabricated with multiple surface micromachining processes followed by dicing into strips and lithography on the edge of the strips. A viable PMMA transfer method could allow higher resolution lithography on such narrow surfaces not achievable with conventional methods.

Fig. 2 illustrates metal patterning over a cleaved chip edge region using the dry transfer PMMA method. When the suspended PMMA film is brought into contact with the sharp edge region of the chip, the film adheres to the substrate even over the edge (after hot plate baking), allowing continuous e-beam lithography on both top and side region, and Fig. 2(b) shows a scanning electron microscope (SEM) image (after lift-off) of applied Ti/Au metal features to such a chip region; the metal electrodes here faithfully follow the sharp contours of the silicon substrate, connecting top and side chip faces across the edge (the patterning can even continue, if needed, to the bottom face of the chip). If necessary, variable tilt angles can be used during evaporation to insure uniform metal coverage. For the edge sample used in Fig. 2(b), only one shallow evaporation angle was used, and the slightly spotty deposition on the remote region of the side face is due to this non-optimal angle. If the substrate were tilted at 45°, making the edge or corner face upward, deposition on regions both at the corner and far from the corner would be more uniform.

The second application concerns extremely fragile substrates, such as thin suspended bridges or cantilevers as might be found in MEMS or NEMS mechanical resonators, chemical sensors, or thermal characterization instrumentation. Of interest is the ability to add, via e-beam lithography, features to the bridge structure following initial processing, or perhaps even to repair nanoscale defects in, for example, electrodes originally written onto the bridges.

We here consider post-production metal patterning on thin (250 nm thick) Si3N4 bridges, 50 μm in length and 8 μm in width, suspended over trenches 35 μm in width, 70 μm in length and 25 μm deep in 3.5 mm × 3.5 mm silicon chips. Figs. 3(a)–3(c) show the process of adding the letters “CAL”
Ultra-clean processing, particularly during lift-off, is critical for defining features and preventing debris or evaporated metals from entering the trench. This results in sharply defined features and ensures precise control over the pattern. The suspended bridge not only stabilizes the suspended structure but also provides an added benefit. It not only provides natural anchoring of the target without the need for mechanical clamping or liquid-based paste, but it also continues to give advantage during resist development and metal deposition, making the entire patterning process cleaner and simpler.

For the cylindrical wire demonstration, a 5 mm length of gold wire is laid flat on a silicon substrate. A 3 mm by 7 mm Kapton tape frame with suspended PMMA is placed over the wire and baked on hot plate at 150 °C for 1 min. The target pattern and UCB letters are e-beam written at an area of 360 μC/cm², the same dose we typically use for flat surface e-beam writing. After development, 20 nm of Ti are evaporated using an e-beam evaporator followed by acetone dip for lift-off. Figure 4(b) shows an optical image of the resulting stenciled pattern on the gold wire.

In summary, the facile spin-free PMMA film transfer method presented here overcomes many of the lithographic challenges found in multiple research fields and applications such as optics, nanoscience, NEMS/MEMS, and material characterization.

This research was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 under the sp²-bonded Materials Program, which provided for postdoctoral support, design and execution of the experiment, and e-beam writing and characterization instrumentation; and by the National Science Foundation under Grant DMR-1206512.

Fig. 3 High resolution e-beam lithography process applied to fragile suspended silicon nitride beam of 250 nm thickness. (a) SEM image of a beam before PMMA dry transfer. (b) Optical image shows beam after dry transfer and e-beam writing and developing. The duplicated words “CAL” are barely visible (arrows). (c) Zoomed in SEM image of the desired raised Ti/Au pattern. (d)–(f) show processing on a different silicon nitride suspended beam patching a gap between two electrodes.

Fig. 4. E-beam writing onto a 1-mil (d = 25 μm) gold wire. (a) PMMA film adheres not only to the wire but also to the substrate around the wire, providing immobilization of wire for controlled manipulation. The desired pattern to be written on the wire is a series of tower symbols and words “UCB.” (b) Optical image of following lithography showing Ti writing onto the wire surface.
which was provided for postdoctoral support and bridge test devices. We thank the Berkeley Marvell Nanofabrication Laboratory for providing additional specialized equipment for device fabrication.

8A. Han, A. Kuan, J. Golovchenko, and D. Branton, Nano Lett. 12, 1018 (2012).