LA-UR-14-25777

Structural Health Monitoring For Bridge Infrastructure

Charles R. Farrar The Engineering Institute Los Alamos National Laboratory Bridge-ing Big Data Workshop Omaha, NE, October 8-9, 2015

₹UCSD School of Jacobs Engineering

Jacobs

Engineering

Structural Health Monitoring

<u>Structural Health Monitoring (SHM)</u> is the process of developing an online damage assessment capability for aerospace, civil, and mechanical infrastructure.

Motivation for SHM

Mianus Bridge, Greenwich, CT. (June, 1983, 3 dead) Silver Bridge, Pt Pleasant, WV (1967, 46 dead) US congress enacts mandatory bridge inspection

Song Su Bridge, Seoul, South Korea (1994, 31 Dead)

Hwy 19 Overpass Collapse Quebec (2006, 5 dead)

From: <u>http://www.time.com/time/photogallery/0,29307,1649646_1421688,00.html</u> http://en.wikipedia.org/wiki/Bridge_collapse

₹UCSD | School of Jacobs | Engineering

Engineering Institute

(2007, **13 dead**)

LA-URECENT Infrastructure Monitoring Project at LANL (Why "Big Data" is an issue)

- Nine sensors (3 acoustic, 6 accelerometers)
- Monitoring for 20 weeks, sampling at 250 Hz = 108 Gigabytes of data.
- Very sparse instrumentation, very slow sampling for SHM
- Not all the sensors worked 100% of the time

Percent of day operational

LA-UR-14-25777

Are These Systems Damaged?

Did you use pattern recognition?

♦UCSD | School of | Jacobs | Engineering

The Structural Health Monitoring Process

• The Structural Health Monitoring process includes:

1. Operational evaluation

Defines the damage to be detected, provides economic or lifesafety justification for the monitoring system, and begins to answer questions regarding implementation issues for a structural health monitoring system.

2. Data acquisition & networking

Defines the sensing hardware and the data to be used in the feature extraction process.

3. Feature selection & extraction

The process of identifying damage-related information from measured data.

4. Probabilistic decision making

Using statistical models to transform features into actual performancelevel decisions

₹UCSD School of Jacobs Engineering

LA-UR-14-25777 State-of-the-Art Damage Detection Primarily Remains Visual Inspection (with local NDE)

School of

Engineering

Jacobs

LA-UR-14-25777 Most NDE techniques are simply *enhanced* forms of visual inspection

Dye Penetrant

Magnet Particle

Thermography

Radiography

₹UCSD School of Jacobs Engineering

More Quantitative Methods

Engineering Institute

- Through the use of more rigorous statistical analysis, SHM methods are becoming more quantitative.
- However, to some degree they are just moving the visual inspection to the computer screen.
- Control Chart for damage detection in a concrete column:

School of

Engineering

Jacobs

Can We Bring More Senses to the SHM Problem?

 All of us are field-deployed SHM sensing and processing systems!

Visual sensing

Acoustic sensing (loose parts)

Olfactory sensing (leaks)

Tactile sensing (feel changes in system thermal & mechanical dynamics)

- After an *appropriate training phase,* we employ all of these senses to diagnose damage in our cars.
- How do we engage more
 "senses" in the SHM process?

₹UCSD School of Jacobs Engineering

LA-UR-14-25777

Vibro-Tactile Haptics for Human-Machine Interface

D. Mascareñas, C. Plont, C. Brown, M. Cowell, J. Jameson, J. Block, S. Djidjev, H. Hahn, and C. Farrar, "A vibro-haptic human–machine interface for structural health monitoring," *International Journal of Structural Health Monitoring* 2014, **13**(6), pp.671-685.

Idea came from TEDtalk: Shyam Sankar: The rise of human-computer cooperation

Lots of Question Regarding This New Approach

- How do we best stimulate the human?
 - Amplitude
 - Frequency
 - Location

School of

Engineering

Jacobs

- Other senses (audio)
- Lots of variables
- Who will be wearing the haptic device?
- How long will they wear it?
- How much training is needed?

Do we end up with humans in sensory deprivation tanks monitoring our civil infrastructure?

Considerations for SHM Data Acquisition System

- THERE IS NO SENSOR THAT MEASURES DAMAGE! (and there never will be!!)
- However, can't do SHM without sensing
- Define data to be acquired and the data to be used in the feature extraction process.
 - Types of data to be acquired
 - Sensor types, number and locations
 - Bandwidth, sensitivity (dynamic range)
 - Data acquisition/transmittal/storage system
 - Power requirements (energy harvesting)
 - Sampling intervals
 - Processor/memory requirements
 - Excitation source (active sensing)
 - Sensor diagnostics

School of

Engineering

Jacobs

LANL/UCSD Wireless Power Delivery

◆UCSD | School of | Jacobs | Engineering

Challenges for SHM Sensing Systems

• Number of sensors

- Large structures with 100s of sensors is still a sparsely instrumented system!
- Large sensor systems pose challenges for reliability and data management

Ruggedness of sensors

- Last for years with minimal maintenance
- Harsh environments
- Need sensor diagnostic capability

Tsing Ma Bridge in Hong Kong (approx. \$20 million for 1000+ channels of data acquisition)

• The sensing system must be developed integrally with the feature selection/extraction and classification.

Engineering Institute

- There is no accepted sensor design methodology
 - Optimal (or robust?) sensor system design (need models)
 - Optimal waveform design for active sensing (need models)

₹UCSD School of Jacobs Engineering

LA-UR-14-25777

Bayesian Risk Approach to Optimal Sensor System Design (E. Flynn Ph.D. dissertation, UCSD)

- What are the relevant damage states, θ, and their probability of occurring P(θ)?
 - "Undamaged" / "Damaged", Continuous states: extent, location
- What are the system costs associated with the SHM design (e)?
 - Hardware cost, Maintenance cost, Operation cost
- What actions, d, does the SHM/DP system dictate in response to observing a damage state?
 - Continue/reduce/stop operation; Inspect component or entire structure; do nothing
- What are the **costs** of taking each of those response actions?
 - Cost of inspection vs missing damage, detecting damage in the wrong location

Automated Feature Extraction (D. Harvey, Ph.D. Dissertation, UCSD,

"Automated Feature Design for Time Series Classification by Genetic Programming")

Autofead search loop

LA-UR-14-25777

Challenges for Feature Selection and Extraction

- Developing an analytical approach to feature selection.
 - Feature selection is still based almost exclusively on engineering judgment
 - Measures of complexity?

Engineering

- Quantifying the features sensitivity to damage
- Quantifying how the feature's change with damage level.
- Understanding how the feature will change with changing environmental and operational conditions
 - The biggest barriers to *in situ* deployment of SHM systems!

€UCSD

Jacobs

School of

Engineering

Environmental Variability

First mode, 10 AM

First mode, 5:30 PM

Challenges for Statistical Modeling

- Analytical approaches to defining threshold levels and to tie thresholds to performance criteria
 - Must balance tradeoffs between false-positive and false-negative indications of damage.
 - Minimize false-positives when economic concerns drive the SHM application (e.g. wind turbines)
 - Minimize false-negatives when life-safety issues drive the SHM application (e.g. nuclear power plant)
- Updating statistical models as new data become available
- Managing the large volumes of data that will be produced by an on-line monitoring system
 - Learn how others do it

School of

Engineering

Jacobs

- credit card fraud detection
- syndromic surveillance for disease epidemic outbreak

System Level Challenges for SHM

• The SHM Catch-22

School

Engineering

Jacobs

- Owners will not invest in SHM technology until it is demonstrated on a real world system.
- Real-world structures are generally not available to damage in an effort to develop and demonstrate SHM technology.
- There is no widely accepted procedure to demonstrate rate-ofreturn on investment in an SHM/DP system

- Need people who can envision the entire lifecycle and who can integrate diverse technologies.
- Is education evolving to address the need for more multidisciplinary technology developers and integrators?

LA-UR-14-25777 A Vision for Engineering Research: Cognitive, Adaptive, Infrastructure Systems

Engineering Institute

- Design system functionality in at the material and manufacturing level
- Monitor, assess, and control inservice system condition (SHM)

School of

Engineering

Jacobs

Intelligent System Retirement (SHM/DP)

Bridge SHM Systems in China: Before 2000

No	Year	Name	Туре	Locate	Span (m)	Sensors installed*	Total
1	1995	Tongling Yangtze River Bridge	Cable Stayed	Anhui	432	1, 2, 4, 11, 13	
2	1997	TsingMaBridge	Suspension	Hong Kong	1377	1-7, 12, 18	278
3	1997	KapShui Mun Bridge	Cable Stayed	Hong Kong	430	1—7, 12, 18	288
4	1998	TingKauBridge	Cable Stayed	Hong Kong	475	1—7, 12, 18	285
5	1999	Xupu Bridge	Cable Stayed	Shanghai	590	2-4, 7, 12	76

1—anemometers; 2—temperature sensors; 3—strain gauges; 4—accelerometers; 5—displacement transducers; 6—global positioning systems; 7—weigh-in-motion systems; 8—corrosion sensors; 9—elasto-magnetic sensors; 10—optic fiber sensors; 11—tiltmeters; 12—level sensors; 13—total stations; 14—seismometers; 15 barometers; 16—hygrometers; 17—pluviometers; 18—video cameras, 19—joint expansion disp., 20—fatigue gage

Courtesy of M. Wang, Northeastern Univ.

₹UCSD

Jacobs

School of

Engineering

Bridge SHM Systems in China: 2005

No	Year	Name	Туре	Locate	Span (m)	Sensors installed*	Total
14	2005	Jiangyin Bridge (after upgrade)	Suspension	Jiangsu	1385	1-6, 9, 10, 13	185
15	2005	3 rd Nanjing Yangtze River Bridge	Cable Stayed	Jiangsu	648	1—5, 10, 11	1303
16	2005	Runyang South Bridge	Suspension	Jiangsu	1490	1—4, 6	241
17	2005	Runyang North Bridge	Cable Stayed	Jiangsu	400	1—4	188
18	2005	Wuhu Bridge	Cable Stayed	Anhui	312	2—5, 10, 12	152
19	2005	Donghai Bridge, Main Route	Cable Stayed	Shanghai	420	13, 6, 8, 9, 12, 19, 20	266
20	2005	Donghai Bridge, Kezhushan Route	Cable Stayed	Shanghai	332	2—4, 6, 9, 19,20	115
21	2005	Donghai Bridge, Other Approaching Routes	Concrete Girder	Shanghai	70,120, 140,160	2, 12	180
22	2005	Dongying Yellow River Bridge	Cable Stayed	Shandong	300	2, 10	1868

₹UCSD

Jacobs

School of

Engineering

HMS in China

No	Year	Name	Туре	Locate	Span (m)	Sensors installed*	Total
1	2008	East San Bridge	Cable Stayed	ShangHai	420	1-6, 8	266
2	2008	Last Sea Druge	Cable Stayed	ShangHai	322		115
3	2008	Hongdu Bridge	Suspension	Jiangxi	195	2, 4-6, 21	86
4	2008	Yingxiong Bridge	Cable stayed	Jiangxi	188	2, 3, 5, 6	86
5	2008	Sutong Bridge	Cable Stayed	Jiangsu	1088	1-6, 8-11, 16	1440
6	2009	Balinghe Bridge	Suspension	Guizhou	1088	1-2, 4-7, 10, 11, 14, 16, 18, 19, 21	256
7	2009	Bayi Bridge	Cable stayed	Jiangxi	160	2, 5-7, 10, 18, 21	223
8	2009	Yingzhou Bridge	Arch	Henan	610	2-5, 10	176

1—anemometers; 2—temperature sensors; 3—strain gauges; 4—accelerometers; 5—displacement transducers; 6—global positioning systems; 7—weigh-in-motion systems; 8—corrosion sensors; 9—elasto-magnetic sensors; 10—optic fiber sensors; 11—tiltmeters; 12—level sensors; 13—total stations; 14—seismometers; 15—barometers; 16—hygrometers; 17—pluviometers; 18—video cameras, 19—joint expansion disp., 20—fatigue

2010~2011courtesy of Zhu Mao, Univ. of Massachusetts, Lowell

HMS in China

No	Year	Name	Туре	Locate	Span (m)	Sensors installed*	Total
9	2010	Jiubao Bridge	Arch	Zhejiang	210	1, 2, 4, 5, 7, 10, 14, 16, 18, 19, 21	333
10	2010	Songpu Bridge	Cable stayed	Heilongjiang	268	1-3, 5, 10, 11, 16, 19, 21	209
11	2010	Lijiatuo YangtzeRiver Bridge	Cable Stayed	Chongqing	444	2-5, 11, 18, 19	231
12	2011	Junshan YangtzeRiver Bridge	Cable Stayed	Hubei	460	1, 2, 4, 6, 7, 10, 11, 14, 16, 19	349
13	2011	Erqi Yangtze River Bridge	Cable Stayed	Hubei	616	1, 2, 4, 6, 7, 10, 11, 14, 16, 18, 19, 21	380
14	2011	Dongjiang Bridge	Suspension	Guangdong	208	1, 2, 4, 6, 7, 10, 11, 14, 16, 17, 19	365
15	2011	Shuangyong Bridge	Suspension	Guangxi	510	2-5, 16, 21	109
16	2011	Si Du He Bridge	Suspension	HuBei	900	1, 2, 4, 5-7, 10, 11	252
17	2011	Tie Luo Ping Bridge	Cable Stayed	HuBei	322	1, 2, 4-6, 10	296
18	2011	Zhi Jing He Bridge	Arch	HuBei	420	2, 4, 10,11	208

1—anemometers; 2—temperature sensors; 3—strain gauges; 4—accelerometers; 5—displacement transducers; 6—global positioning systems; 7—weigh-in-motion systems; 8—corrosion sensors; 9—elasto-magnetic sensors; 10—optic fiber sensors; 11—tiltmeters; 12—level sensors; 13—total stations; 14—seismometers; 15—barometers; 16—hygrometers; 17—pluviometers; **18**—**18**—**19**—joint expansion disp., 20—fatigue

Jacobs Engineering

2012 courtesy of Zhu Mao, Univ. of California, San Diego

HMS in China

No	Year	Name	Туре	Locate	Span (m)	Sensors installed*	Total
19	2012	Fenghua River Bridge	Arch	Zhejiang	260	1-4, 6-7, 10, 11, 14, 16, 19, 21	360
20	2012	Hanjiatuo Yangtze River Bridge	Cable Stayed	Chongqing	432	1, 2, 4, 5, 11, 21	93
21	2012	Fulin Yangtze River Bridge	Cable Stayed	Chongqing	330	2, 4, 5, 11, 16, 19	70
22	2012	Yingwuzhou Yangtze River Bridge	Suspension	Hubei	850	1-4, 6, 10, 11, 14, 16, 19	219
23	2012	Langqi Ming River Bridge	Cable Stayed	Fujian	680	1, 2, 4, 6, 7, 10, 11, 14, 16, 19	222
24	2012	Sixth Jianghan Bridge	Suspension	Hubei	252	1-4, 10, 11, 16, 19, 21	176
25	2012	Ma'anshan Yangtze River	Suspension	AnHui	1080	1, 2, 4, 5, 6, 10, 11,	112
26	2012	Bridge	Cable Stayed	AnHui	260	16	442
27	2012	Taizhou Yangtze River Bridge	Suspension	Jiangsu	1080	1-4, 6,16	275

1-anemometers; 2-temperature sensors; 3-strain gauges; 4-accelerometers; 5-displacement transducers; 6-global positioning systems; 7—weigh-in-motion systems; 8—corrosion sensors; 9—elasto-magnetic sensors; 10—optic fiber sensors; 11—tiltmeters; 12—level sensors; 13—total stations; 14—seismometers; 15—barometers; 16—hygrometers; 17—pluviometers; 18—video cameras, 19—joint expansion disp., 20—fatigue ₹UCSD School of Jacobs Engineering

2013-2014 courtesy of Zhu Mao, Univ. of Massachusetts, Lowell

€UCSD

Jacobs

School of

Engineering

HMS in China

No	Year	Name	Туре	Locate	Span (m)	Sensors installed*	Total
28	2013	Guojiahuayuan Bridge	Concrete Girder	Chongqing	240	2, 3, 5, 7	94
29	2013	Guozigou Bridge	Cable Stayed	XinJiang	360	1, 2, 4-7, 10, 11, 16	277
30	2014	Dongshuimen Yangtze River Bridge	Cable Stayed	Chongqing	445	1-7, 16, 18, 19	208
31	2014	Qiansimen Yangtze River Bridge	Cable Stayed	Chongqing	312	1-7, 16, 18, 19	175

1—anemometers; 2—temperature sensors; 3—strain gauges; 4—accelerometers; 5 displacement transducers; 6—global positioning systems; 7—weigh-in-motion systems; 8 corrosion sensors; 9—elasto-magnetic sensors; 10—optic fiber sensors; 11—tiltmeters; 12—level sensors; 13—total stations; 14—seismometers; 15—barometers; 16—hygrometers; 17 pluviometers; 18—video cameras, 19—joint expansion disp., 20—fatigue

LA-UR-14-25777

SHM Standards in China

P

Design Standard for Structural health Monitoring systems (CECS 333:2012)

by the China Project Construction Association

Technical code for monitoring of public **building structures (GB 50982-2014)** -to be implemented

by the Ministry of Housing and Urban-Rural **Development of China**,

and

the General Administration of Quality Supervision, Inspection and Quarantine of China

Engineering

Bridge SHM Systems in China

China leads in:

Quantity: Since 2005, almost all major new bridges as well as some old bridges have SHM systems. Currently estimated more than 40 systems.

- Scale: From simple to complex, largest systems contains 1000+ sensors for one bridge. On the order of 0.6% of construction cost
- Quality: Some systems have been deployed for 10+ years, but the many are relatively new.

Technology used: Distributed network, remote access, substation, fiber optical, and other new sensor technologies.

UCSD School of Jacobs Engineering

Some of Our Team

Dr. David Mascarenas, R&D Eng. LANL

Prof. Mike Todd, Structural Eng. Dept. UCSD

Dr. Dustin Harvey, R&D Eng. LANL

