Florin Bobaru

Florin Bobaru  

Florin Bobaru
Contact Information:
W355 NH
Lincoln: City Campus
(402) 472-8348
Personal Links:
C.V. (Curriculum Vitae)

  • Ph.D., Theoretical and Applied Mechanics, Cornell University, Ithaca, NY, 2001
  • M.S., Mathematics and Mechanics of Solids, University of Bucharest, Romania, 1997
  • B.S., Mathematics and Mechanics, University of Bucharest, Romania, 1995

  1. Graduate Research Assistanships avaiable NOW for candidates pursuing a Ph.D. degree. Strong computational modeling and mechanics/thermal background required. Contact me directly at fbobaru2 at unl.edu
  2. New paper in Computer Physics Communications on kernel selection in peridynamic models for diffusion. See it at  http://dx.doi.org/10.1016/j.cpc.2015.08.006 
  3. New paper in Composite Structures on dynamic fracture of Functionally Graded Materials (FGMs) just published! see it at http://dx.doi.org/10.1016/j.compstruct.2015.07.047  . On that web-site you can see some nice simulation movies.
  4. New paper on peridynamic modeling of corrosion damage in Journal of the Mechanics and Physics of Solids (JMPS)  http://dx.doi.org/10.1016/j.jmps.2015.02.015

Areas of Research and Professional Interest
  • Damage and fracture with peridynamics
  • Modeling of corrosion damage and stress corrosion cracking
  • Failure in heterogeneous materials (fiber-reinforced composites, polycrystalline ceramics, etc.)
  • Dynamics of Granular Materials
  • Optimization of material composition and optimal shape design

About Florin Bobaru

Have you ever wondered why does glass break in such complex patterns, fragments and chips? Or how does corrosion degrades metal parts in your car? Our research group works on computational models that answer such questions and  explain the behavior observed experimentally in some of the most challenging problems that have puzzled researchers for decades. We use these models for a variety of problems, from heat and mass diffusion to dynamic fracture and fragmentation. Recent focus is on: peridynamics for fracture and impact in glass, polycrystalline ceramics, and fiber-reinforced composites, modeling of corrosion damage and Stress Corrosion Cracking, dynamics of granular materials and their interaction with vibrating structures, multidisciplinary optimization, inverse problems, and multiscale and multiphysics methods.

Damage, corrosion, and fracture with peridynamics
The peridynamic formulation is a novel reformulation of the classical continuum mechanics theory which allows one to model material failure and damage in a natural way. In peridynamics, cracks are part of the solution, not part of the problem. We have used such models to explain the role Van der Waals forces play in the deformation and damage behavior of nanofiber networks, to explain the growth of cracks and fragmentation evolution in glass plates, to model trans- and intergranular fracture in polycrystalline ceramics, to discover strain-rate effects in the failure of fiber-reinforced composites, and to simulate the growth of subsurface damage in corrosion. This research is being funded by AFOSR through a MURI project, by ONR, by NAVAIR, by ARO and ARL. Recent past funding includes grants from Boeing Co, Sandia National Laboratories, Callahan Innovation (New Zealand), NASA.  

Dynamics of Granular Materials interacting with vibrating plates
Granular materials are one of the most puzzling material systems. Their dynamic behavior is, to a large extent, still unknown. The models we proposed,  simulate the dynamic interaction between a layer of granular material and an elastic vibrating plate to provide us with a deeper understanding of the fascinating dynamic behavior of granular materials. 

Optimization of material composition
Can one find the "best" composition of a multi-component material (such as a composite or a functionally graded material - FGM) to increaase its strength or stiffness, or reduce its mass? Our results on optimal material design of FGMs show that new possible architectures when trying to minimize the chance of failure due to thermal and mechanical stresses.

Optimal shape design
What is the best shape of a cooling thermal fin? Our novel algorithms compute optimal shape of systems when there are large shape changes between the initial guess and the final optimal design. Our meshfree approach leads to interesting solutions that mimic naturally occurring systems like the plates on the back of a stegosaurus dinosaur, or the extended surfaces on the inner side of the intestine (intestinal villi). 


Employee History:
  • University of Nebraska-Lincoln, Professor, Mechanical & Materials Engineering, 2013 – present
  • Visiting Scholar, University of Padova, Italy, September 2015.
  • Visiting Associate Professor, Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California, USA, April-August 2011
  • Visiting Scholar, Multiscale Dynamic Material Modeling Department, Sandia National Laboratories, Albuquerque, New Mexico, USA, January-March 2009
  • Visiting Scholar, Fracture Group, Cavendish Lab, University of Cambridge, Cambridge, U.K., September-December 2008
  • University of Nebraska-Lincoln, Associate Professor, Department of Engineering Mechanics, 2007 – 2013
  • University of Nebraska-Lincoln, Assistant Professor, Department of Engineering Mechanics, 2001 – 2007
  • Sandia National Laboratories, Computer Science Research Institute, Albuquerque, NM. Summer Research Fellow. 2002 – 2004, 2005
  • Cornell University, Ithaca, NY. Graduate Teaching and Research Assistant. 1996-2000


  • AFOSR MURI center for center for material failure prediction through peridynamics (2014-2019)
  • ONR (2015-2018)
  • NAVAIR (2014-2015)
  • ARO/ARL (2010-2016)
  • Boeing Co.
  • NASA

Selected Publications

Journal Publications:

h-index = 18, i10-index=24, over 1,000 citations (Google Scholar, August 2015)

  1. Z. Chen, F. Bobaru, "Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion", Computer Physics Communications, (2015). http://dx.doi.org/10.1016/j.cpc.2015.08.006
  2. Z. Cheng, G. Zhang, Y. Wang, F. Bobaru, "A peridynamic model for dynamic fracture in functionally graded materials", Composite Structures, 133: 529–546 (2015).   http://dx.doi.org/10.1016/j.compstruct.2015.07.047 
  3. Z. Chen, F. Bobaru, "Peridynamics modeling of pitting corrosion damage", Journal of the Mechanics and Physics of Solids, 78: 352–381 (2015).  http://dx.doi.org/10.1016/j.jmps.2015.02.015
  4. W. Hu, Y. Wang, J. Yu, C.F. Yen, F. Bobaru, “Impact damage on a thin glass with a thin polycarbonate backing”, International Journal of Impact Engineering62: 152- 165 (2013).
  5. F. Bobaru, YD. Ha, and W. Hu, “Damage progression from impact in layered glass modeled with peridynamics”, Open Engineering2(4): 551-561 (2012).
  6. F. Bobaru and W. Hu, “The meaning, selection, and use of the Peridynamic horizon and its relation to crack branching in brittle materials” International Journal of Fracture176: 215–222 (2012).
  7. W. Hu, YD. Ha, F. Bobaru, and S.A. Silling, “The formulation and computation of the nonlocal J-integral in bond-based Peridynamics”, International Journal of Fracture176: 195–206 (2012).
  8. W. Hu, YD. Ha, and F. Bobaru, “Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites”, Computer Methods in Applied Mechanics and Engineering217–220: 247–261 (2012).
  9. F. Bobaru and M. Duangpanya, “A Peridynamic Formulation for Transient Heat Conduction in Bodies with Evolving Discontinuities”, Journal of Computational Physics231(7): 2764-2785 (2012).
  10. YD. Ha and F. Bobaru, “Characteristics of dynamic brittle fracture captured with peridynamics”,Engineering Fracture Mechanics78: 1156–1168 (2011). doi:10.1016/j.engfracmech.2010.11.020.
  11. F. Bobaru and YD. Ha, “Adaptive refinement and multiscale modeling in 2D Peridynamics”,International Journal for Multiscale Computational Engineering9(6): 635-659 (2011).
  12. F. Bobaru, “Peridynamics and Multiscale Modeling” Editorial in Special Issue on “Advances in Peridynamics”, International Journal for Multiscale Computational Engineering9(6): vii-ix (2011).
  13. W. Hu, YD. Ha, and F. Bobaru. “Modeling Dynamic Fracture and Damage in Fiber-Reinforced Composites with Peridynamics”, International Journal for Multiscale Computational Engineering,9(6): 707–726 (2011).
  14. A.L. Collins, J.W. Addiss, S.M. Walley, K. Promratana, F. Bobaru, W.G. Proud, D.M. Williamson, “The effect of rod nose shape on the internal flow fields during the ballistic penetration of sand”,International Journal of Impact Engineering, 38(12): 951-963 (2011).
  15. F. Bobaru and M. Duangpanya, “The peridynamic formulation for transient heat conduction,”International Journal of Heat and Mass Transfer53(19-20): 4047-4059 (2010).
  16. YD. Ha and F. Bobaru, “Studies of dynamic crack propagation and crack branching with peridynamics,” International Journal of Fracture162(1-2): 229-244 (2010).
  17. S. A. Silling, O. Weckner, E. Askari, and F. Bobaru, “Crack nucleation in a peridynamic solid,”International Journal of Fracture162(1-2): 219-227 (2010).
  18. F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, and J. Xu, “Convergence, adaptive refinement, and scaling in 1D peridynamics”, International Journal for Numerical Methods in Engineering77: 852-877 (2009).
  19. Principal Guest Editor: Florin Bobaru, J.S. Chen, Joseph A. Turner, "Advances in the Dynamics of Granular Materials", Mechanics of Materials41(6): 635-636, June 2009.
  20. Kitti Rattanadit, Florin Bobaru, Konlayut Promratana, Joseph A. Turner, "Force chains and resonant behavior in bending of a granular layer on an elastic support", Mechanics of Materials,41(6): 691-706, June 2009.
  21. P. Qiao, M. Yang, and F. Bobaru, “Impact mechanics and high-energy absorbing materials: review”, Journal of Aerospace Engineering21(4): 235-248 (2008).
  22. F. Bobaru, “Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a peridynamic approach”, Modelling and Simulation in Materials Science and Engineering 15: 397-417 (2007).
  23. F. Bobaru, “Designing optimal volume fractions for functionally graded materials with temperature-dependent material properties”, Journal of Applied Mechanics74: 861-874 (2007).
  24. W. Kang, J.A. Turner, F. Bobaru, L. Yang, and K. Rattanadit, “Granular layers on vibrating plates: Effective bending stiffness and particle-size effects”, Journal of the Acoustical Society of America,121, 888-896 (2007).
  25. F. Bobaru and S. Rachakonda, “E(FG)2: a new fixed-grid shape optimization method based on the element-free Galerkin meshfree analysis”, Structural and Multidisciplinary Optimization 32(3): 215-228 (2006).
  26. R.K. Lakkaraju, F. Bobaru, and S.L. Rohde, “Optimization of multilayer wear-resistant 3 thin films using finite element analysis on stiff and compliant substrates”, Journal of Vacuum Science and Technology (A) - 24 (1): 146-155 (2006).
  27. S.A. Silling and F. Bobaru, “Peridynamic modeling of membranes and fibers”, International Journal of Non-Linear Mechanics40(2-3): 395-409 (2005).
  28. F. Bobaru and S. Rachakonda, “Optimal shape profiles for cooling fins of high and low conductivity”, International Journal of Heat and Mass Transfer47(23): 4953-4966 (2004).
  29. F. Bobaru and S. Rachakonda, “Boundary layer in shape optimization of convective fins using a meshfree approach”, International Journal for Numerical Methods in Engineering, 60(7): 1215-1236 (2004).
  30. F. Bobaru and Subrata Mukherjee, “Meshless approach to shape optimization of linear thermoelastic solids”, International Journal for Numerical Methods in Engineering53(4): 765-796 (2002).
  31. F. Bobaru and S. Mukherjee, “Shape Sensitivity Analysis and Shape Optimization in Planar Elasticity Using the Element-Free Galerkin Method”, Computer Methods in Applied Mechanics and Engineering190(32-33) 4319-4337 (2001).
  32. F. Bobaru, “Prestressed Elastic Solid Containing a Crack, Subjected to Normal or Tangential Loadings”, Revue Roumaine des Science Technique, Serie de Mecanique Applique41(5-6): 421-429 (1996).

Follow Mechanical & Materials Engineering