Image of a warehouse

Research Conducted by Professor, George Morcous

Self-Consolidating Concrete for Cast-in-Place Bridge Components (NCHRP 18-16)

Self-consolidating concrete (SCC) is a specially proportioned hydraulic cement concrete that enables the fresh concrete to flow easily into the forms and encapsulate the steel reinforcement without segregation and with no need for mechanical vibration as shown below.

Simplified Full Depth Precast Concrete Deck Panel Systems (NCHRP 12-96)

Full-depth precast concrete deck panels have been widely used in accelerated bridge construction (ABC) in various forms and sizes. As a prefabricated component, current panel design has played a major role in meeting the objectives of ABC by expediting construction, improving quality and durability, improving public and worker safety, and reducing road user impact.

Optimizing Concrete Deck Removal in Concrete I-Girder Bridges (MATC)

Current concrete bridge I-girders have unique characteristics compared to the old standard AASHTO I-girders. These girders have wide and thin top flange to improve lateral stability of long span girders during erection, provide adequate platform for workers, shorten deck span, and reduce girder weight.

Implementation of Precast Concrete Deck Panels for Rapid Bridge Construction (NDOR)

Existing precast concrete deck systems are either partial depth or full-depth with open channels/pockets that require cast-in-place concrete and deck overlay.

Implementation of 0.7 in. Diameter Strands in Prestressed Concrete Bridge Girders (NDOR)

For several years, 0.7 in. diameter strands have been used in cable bridges and mining applications in the US, and for post-tensioning tendons in Europe and Japan. The Pacific Street Bridge over I-680 in Omaha, NE, is the first bridge in the world to use 0.7 in. diameter prestressing strands in the precast-pretensioned concrete girders.

Life-Cycle Cost Analysis (LCCA) for Bridge Management (NDOR)

The main objective of this project is to perform LCCA for different maintenance strategies using the developed deterioration models, shown below, and cost data for Nebraska Bridges.