Professor

Academic Degrees

  • Ph.D., Theoretical and Applied Mechanics, Cornell University, Ithaca, NY, 2001
  • M.S., Mathematics and Mechanics of Solids, University of Bucharest, Romania, 1997
  • B.S., Mathematics and Mechanics, University of Bucharest, Romania, 1995

News

  1. A new paper on explaining how and why cracks systems develop in a glass plate under impact! The paper has 44 figures and 16 numerical simulation movies (in the electronic supplementary material section). https://doi.org/10.1007/s10704-024-00813-3 or https://rdcu.be/d2A9I
  2. How to choose the peridynamic horizon? See a talk given at Brown University ICERM workshop on Nonlocality, April 18th, 2024:  https://icerm.brown.edu/video_archive/?play=3564
  3. A 4-day Advanced Course on Peridynamics Modeling and Computations at CISM, Udine, Italy (hybrid: in-person and online attendance; recordings will also be available!). Registration deadline: Oct. 8th, 2023!
  4. Watch a talk I gave at an acoustic emissions Webinar on Peridynamic modeling of fracture in porous/composite materials (April 13, 2023). My presentation starts at 48:45 in the video, and ends at 1:27:00 (about 38 minutes).
  5. Watch a presentation I gave on "Fast computaitons for peridynamic fracture and damage" at the IPAM’s Workshop “Scale-Bridging Materials Modeling at Extreme Computational Scales” at UCLA on April 18th, 2023.
  6. Check out our open-source 3D fast peridynamic codes for dynamic brittle fracture (bond-based, or state-based, or correspondence: your choice!) and corrosion (pitting or uniform) on GitHub! Click on the green "Code" button to download the zip file. Papers detailing the two codes are to appear soon in the Journal of Peridynamics and Nonlocal Modeling special issue on Nonlocal Codes. See the dynamic fracture paper here
  7. Cracks can form next to each-other in curing/drying of early-age concrete, dramatically limiting its durability. This new PD model can help to avoid these situations. New paper in International Journal of Pavement Technology!
  8. Can peridynamics be used to simulate discrete dislocation dynamics in plasticity and fracture? Yes it can! New paper in International Journal of Plasticity!
  9. Learn how to construct a peridynamic model for viscous flow! New paper in Journal of Computational Physics!  
  10. Did you know it's not that difficult to find analytical solutions for peridynamic equations? See our new paper in JPNM!
  11. Fast computation of dynamic crack branching! New convolution-based peridynamic model in CMAME
  12. A fascinating look at crevice corrosion attack! See the movie at the end of the paper (Appendix). Free access at this link until Dec. 31st, 2021 to the new paper in Electrochimica Acta.
  13. Take a look at our new model for galvanic corrosion and fracture published in Electrochimica Acta!
  14. New paper on dynamic fracture in concrete published in EFM!
  15. New paper on PD for plasticity showing shear bands and rupture published in IJSS !
  16. Some connections between peridynamics and Graph Laplacian published in the Journal of Peridynamics and Nonlocal Modeling!
  17. New paper showing striking connections between peridynamic solutions and classical solutions. 
  18. Watch our invited talk at the One Nonlocal World Opening Event! See how approximation errors in nonlocal models can be used to find the exact solution of the local model!
  19. Peridynamic simulations with billions of nodes for transient diffusion done fast! New paper in CMAME
  20. A rate-dependent visco-elastic model for impact fracture of PMMA published in Int. J. of Impact Engineering!
  21. Modeling crack nucleation and propagation in glass, concrete, and composites: see this paper!
  22. New paper on transition from pitting corrosion to fracture published in JMPS!
  23. New paper comparing peridynamics, phase-field, and LS-DYNA implementation of peridynamics for crack branching in glass.
  24. New paper on fracture in concrete published in Engineering Fracture Mechanics!
  25. New paper showing how corrosion of rebars can lead to cracks in concrete!
  26. New paper published in Journal of Peridynamics and Nonlocal Modeling (2020)!
  27. New paper in Electrochimica Acta! "A peridynamic mechano-chemical damage model for stress-assisted corrosion"
  28. New paper published on fracture in porous materials! "A peridynamic model for brittle damage and fracture in porous materials"
  29. New paper in Engineering Fracture Mechanics! "Uncovering the dynamic fracture behavior of PMMA with peridynamics: The importance of softening at the crack tip"
  30. New paper in Composites Science and Technology! "A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites"
  31. New paper in Corrosion Reviews! "Computational modeling of pitting corrosion"
    10.1515/corrrev-2019-0049
  32. Congratulations to: (1)  Siavash Jafarzadeh, who was awarded the UNL 2018-2019 Outstanding Graduate Research & Creative Activities Award; (2) Jiangming Zhao, who was awarded the Milton Mohr Graduate Fellowship for 2019-2020 academic year! Well done guys! 
  33. New paper accepted in Corrosion Science! See some amazing simulations of pits and lacy covers merging in 3D!!! https://doi.org/10.1016/j.corsci.2019.01.006
  34. New paper on failure in electronic packaging, see https://doi.org/10.1109/TCPMT.2018.2862898
  35. New results on advection-diffusion problems published in Int. J. of Heat and Mass Transfer!
  36. New results on intergranular corrosion damage published in JES!
  37. Our work on pitting corrosion has been highlighted on the May 3rd, 2018 post on the Facebook page of CORROSION journal ! Check out the simulation movies in the Media tab or the Supplement tab
  38. Prof. Bobaru will give a Keynote presentation on "Crack-path instabilities in glass as a way of determining the peridynamic horizon size in thermally-driven fracture"
    at the 10th European Solid Mechanics Conference in Bologna, Italy, July 2nd-6th, 2018. 
  39. A strange connection between vortices and thermally-driven cracks in glass! Take a look at the fascinating simulation movies in Supplementary material. See the new paper here.
  40. New paper published on corrosion and peridynamic fracture in Materials Science and Engineering A.
  41. New paper on impact and supershear damage front propagation in ceramics published in Int. J. Impact Engineeringhttps://doi.org/10.1016/j.ijimpeng.2017.11.010 
  42. New paper on peridynamic surface corrections published in Computational Mechanics! See it at: http://rdcu.be/vpx
  43. New paper on objectivity of state-based PD models published in Journal of Elasticity. See it at: https://link.springer.com/article/10.1007/s10659-017-9641-6
  44. Congratulations to Guanfeng Zhang for receiving the 2017 UNL College of Engineering Outstanding Graduate Research Assistant Award!  
  45. Handbook of Peridynamic Modeling  just published ! You can purchase it HERE or HERE.   
  46. New papers published in CMAME on selecting the peridynamic kernel, and in JES on the properties of the corrosion diffusion layer in MG alloys! 
  47. Our paper in Engineering Fracture Mechanics (EFM) is Top 3 most cited paper in EFM among papers published since 2011!
  48. Prof. Bobaru awarded the 2016 College of Engineering Faculty Research and Creative Activity Award. /awards/faculty-staff-awards/
  49. New paper on fatigue damage and fracture published in Engineering Fracture Mechanics: "Validation of a peridynamic model for fatigue cracking", 162: 76–94 (2016), see http://dx.doi.org/10.1016/j.engfracmech.2016.05.008
  50. New paper on Why Do Cracks Branch? published in International Journal of Fracture anniversary issue. See it at  http://link.springer.com/article/10.1007/s10704-015-0056-8 and check out the 22 simulation movies in the Supplementary Material section.
  51. New paper in Journal of The Electrochemical Society on influence of passive film on corrosion damage. JES, vol. 163 no. 2 C19-C24 (2016). See it at   http://dx.doi.org/10.1149/2.0521602jes

Experience

Employee History:

  • University of Nebraska-Lincoln, Hergenrader Distinguished Scholar, August 2017-June 2022. 
  • University of Nebraska-Lincoln, Professor, Mechanical & Materials Engineering, 2013 – present
  • Visiting Scholar, University of Padova, Italy, September 2015, 2022.
  • Visiting Associate Professor, Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California, USA, April-August 2011
  • Visiting Scholar, Multiscale Dynamic Material Modeling Department, Sandia National Laboratories, Albuquerque, New Mexico, USA, January-March 2009
  • Visiting Scholar, Fracture Group, Cavendish Lab, University of Cambridge, Cambridge, U.K., September-December 2008
  • University of Nebraska-Lincoln, Associate Professor, Department of Engineering Mechanics, 2007 – 2013
  • University of Nebraska-Lincoln, Assistant Professor, Department of Engineering Mechanics, 2001 – 2007
  • Sandia National Laboratories, Computer Science Research Institute, Albuquerque, NM. Summer Research Fellow. 2002 – 2004, 2005
  • Cornell University, Ithaca, NY. Graduate Teaching and Research Assistant. 1996-2000

Curriculum Vitae (CV):

Areas of Research and Professional Interest

  • Damage and fracture with peridynamics
  • Modeling of corrosion damage and stress corrosion cracking
  • Damage in heterogeneous materials (fiber-reinforced composites, polycrystalline ceramics, etc.)
  • Dynamics of Granular Materials
  • Optimization of material composition and optimal shape design

Research Profiles:

About Florin Bobaru

Ever wondered why does glass break in such complex patterns, fragments and chips? Or how does corrosion of a few bolts and plates bring an entire bridge down? Our research group works on computational models that answer such questions and  explain the behavior observed experimentally in some of the most challenging problems that have puzzled researchers for decades. We use these models for solving problems that deal with heat and mass diffusion, dynamic fracture, and fragmentation. Recent focus is on: peridynamics for impact fracture in glass, glassy-polymers, polycrystalline ceramics, and fiber-reinforced composites; fracture in concrete induced by corrosion; corrosion damage and Stress Corrosion Cracking; dynamics of granular materials and their interaction with elastic media, multidisciplinary optimization, inverse problems, and multiscale and multiphysics methods.

Damage, corrosion, and fracture with peridynamics
The peridynamic theory is a novel reformulation of the classical continuum mechanics which allows one to model fracture, damage, fragmentation in a natural way. In peridynamics, cracks are part of the solution, not part of the problem. We have used such models to explain the role Van der Waals forces play in the deformation and damage behavior of nanofiber networks, to explain the growth of cracks and fragmentation evolution in glass plates, to model trans- and intergranular fracture in polycrystalline ceramics, to discover strain-rate effects in the failure of fiber-reinforced composites, and to simulate the growth of subsurface damage in corrosion. This research is being funded by NSF, AFOSR through a MURI project, by ONR, by NAVAIR, by ARO and ARL. Recent past funding includes grants from Boeing Co, Sandia National Laboratories, Callahan Innovation (New Zealand), NASA.  

Dynamics of Granular Materials interacting with vibrating plates
Granular materials are one of the most puzzling material systems. The models we proposed,  simulate the dynamic interaction between a layer of granular material and an elastic vibrating plate to provide us with a deeper understanding of the fascinating dynamic behavior of granular materials. Think of a land- or rock-slide and imagine the possibility of predicting their behavior under their interaction with the elastic soil support.

Optimization of material composition
Is it possible to find the "best" composition of a multi-component material (such as a composite or a functionally graded material - FGM) that maximizes its strength or stiffness, and reduces its mass? Our results on optimal material design of FGMs show new possible architectures that minimize the chance of failure due to thermal and mechanical stresses.

Optimal shape design
What is the best shape of a cooling thermal fin? Our novel algorithms compute optimal shape of systems when there are large shape changes between the initial guess and the final optimal design. Our meshfree approach leads to interesting solutions that mimic naturally occurring systems like the plates on the back of a stegosaurus dinosaur, or the extended surfaces on the inner side of the intestine (intestinal villi). 

Honors and Awards

  • Invited Speaker at the Brown University ICERM workshop on "Nonlocality: Challenges in Modeling and Simulation", April 18th, 2024.

Funding

  • NSF CMMI CDS&E (2020-2024)
  • AFOSR MURI Center for Material Failure Prediction through Peridynamics (2014-2019)
  • ONR  on corrosion (2015-2017)
  • ONR on fatigue failure in composites (2016-2018)
  • NAVAIR (2014-2015)
  • ARO/ARL (2010-2016)
  • Boeing Co.
  • NASA

Selected Publications

Books

Handbook of Peridynamic Modeling, Edited by  Florin Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling. Chapman and Hall/CRC, 2016.

Book Chapters:

  1. "Peridynamic Functionally Graded and Porous Materials: Modeling Fracture and Damage",
    Z. Chen, S. Niazi, G. Zhang, and F. Bobaru. In "Handbook of Nonlocal Continuum Mechanics for Materials and Structures", G.Z. Voyiadjis (ed.), 2018. https://doi.org/10.1007/978-3-319-22977-5_36-1
  2. “Crack Branching in Dynamic Brittle Fracture”, F. Bobaru and G. Zhang,. In Handbook of Peridynamic Modeling, F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling (eds). CRC Press/Taylor and Francis Group, 2016, pp: 245-316.
  3. “Peridynamic Modeling of Impact and Fragmentation”, F. Bobaru, Z. Xu, and Y. Wang. In Handbook of Peridynamic Modeling, F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling (eds). CRC Press/Taylor and Francis Group, 2016, pp: 379-404.
  4. “A Peridynamic Model for Corrosion Damage”, Z. Chen and F. Bobaru. In Handbook of Peridynamic Modeling, F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling (eds). CRC Press/Taylor and Francis Group, 2016, pp: 437-487.

Journal Publications:

h-index =50, i10-index=81, over 10,700 citations (Google Scholar, December 2024)

  1. Y. Wang, C.F. Yen, J. Yu, J. Wright, F. Bobaru, "Wave interactions and fracture evolution in a thin glass plate under impact: a combined experimental and peridynamic analysis", International Journal of Fracture (2024). https://doi.org/10.1007/s10704-024-00813-3  or https://rdcu.be/d2A9I
  2. A. Hermann, A. Shojaei, D. Höche,  S. Jafarzadeh, F. Bobaru, C.J. Cyron, "Nonlocal Nernst-Planck-Poisson System for Modeling Electrochemical Corrosion in Biodegradable Magnesium Implants", Journal of  Peridynamics and Nonlocal Modeling7: 1–32 (2025). https://doi.org/10.1007/s42102-024-00125-z
  3. F. Scabbia, C. Gasparrini, M. Zaccariotto, U. Galvanetto, F. Bobaru, "A peridynamic model for oxidation and damage in zirconium carbide ceramics",
    International Journal of Heat and Mass Transfer, 237: 126414 (2025). https://doi.org/10.1016/j.ijheatmasstransfer.2024.126414.

  4. F. Bobaru, U. Galvanetto, Z. Chen, “Introduction to the special issue on nonlocal models in fracture and damage”, International Journal of Fracture, 245: 115–120 (2024). https://doi.org/10.1007/s10704-024-00769-4

  5. Zhao, J., Jafarzadeh, S., Chen, Z. et al. Enforcing local boundary conditions in peridynamic models of diffusion with singularities and on arbitrary domains. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01995-z
  6. S. Jafarzadeh, F. Mousavi, L. Wang, F. Bobaru. “PeriFast/Dynamics: A MATLAB Code for Explicit Fast Convolution-based Peridynamic Analysis of Deformation and Fracture”, Journal of Peridynamics and Nonlocal Modeling, 6: 33-61 (2024). https://doi.org/10.1007/s42102-023-00097-6

  7. L. Wang, S. Jafarzadeh, F. Mousavi, F. Bobaru. “PeriFast/Corrosion: A 3D Pseudospectral Peridynamic MATLAB Code for Corrosion”, Journal of Peridynamics and Nonlocal Modeling 6: 62-86 (2024). https://doi.org/10.1007/s42102-023-00098-5

  8. A. Pirzadeh, F. Dalla Barba, F. Bobaru, L. Sanavia, M. Zaccariotto, U. Galvanetto. “Elastoplastic peridynamic formulation for materials with isotropic and kinematic hardening”. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01943-x

  9. F. Scabbia, C. Gasparrini, M. Zaccariotto, U. Galvanetto, A. Larios, F. Bobaru. “Moving interfaces in peridynamic diffusion models and the influence of discontinuous initial conditions:Numerical stability and convergence”, Computers & Mathematics with Applications, 151: 384-396 (2023). https://doi.org/10.1016/j.camwa.2023.10.016

  10. C. Tian, S. Fan, J. Du, Z. Zhou, Z. Chen, F. Bobaru. "A peridynamic model for advection–reaction–diffusion problems",
    Computer Methods in Applied Mechanics and Engineering415: 116206, (2023). https://doi.org/10.1016/j.cma.2023.116206.

  11. C. Stenström, K. Eriksson, F. Bobaru, S. Golling, P. Jonsén. "The essential work of fracture in peridynamics", International Journal of Fracture, 242: 129–152 (2023). https://doi.org/10.1007/s10704-023-00705-y, or the shareable link https://rdcu.be/djXQr
  12. Z. Chen, X. Peng, S. Jafarzadeh, F. Bobaru. "Analytical solutions of peridynamic equations. Part II: Elastic wave propagation", International Journal of Engineering Science, 188: 103866, (2023). https://doi.org/10.1016/j.ijengsci.2023.103866

  13. X. Peng, Z. Chen, F. Bobaru. "Accurate predictions of dynamic fracture in perforated plates", International Journal of Fracture, 244: 61–84 (2023). https://doi.org/10.1007/s10704-023-00719-6, or the shareable link https://rdcu.be/djXOU
  14. L. Wang, S. Jafarzadeh, F. Mousavi, F. Bobaru. "PeriFast/Corrosion: A 3D Pseudospectral Peridynamic MATLAB Code for Corrosion", Journal of Peridynamics and Nonlocal Modeling (2023). https://doi.org/10.1007/s42102-023-00098-5, or the shareable link https://rdcu.be/djXO2
  15. S. Jafarzadeh, F. Mousavi, L. Wang, F. Bobaru. "PeriFast/Dynamics: A MATLAB Code for Explicit Fast Convolution-based Peridynamic Analysis of Deformation and Fracture", Journal of Peridynamics and Nonlocal Modeling, (2023).     https://doi.org/10.1007/s42102-023-00097-6
  16. Z. Zhou, X. Peng, P. Wu, Z. Chen, F. Bobaru. "New Insights on Convergence Properties of Peridynamic Models for Transient Diffusion and Elastodynamics", Communications in Computational Physics, 32: 1257-1286, (2022). http://doi.org/10.4208/cicp.OA-2022-0080 

  17. T. Patil, R. Karunakaran, F. Bobaru, M.P. Sealy. "Shot Peening Induced Corrosion Resistance of Magnesium Alloy WE43", Manufacturing Letters33: 190-194 (2022). https://doi.org/10.1016/j.mfglet.2022.07.025 

  18. W. Dong, H. Liu, J. Du, X. Zhang, M. Huang, Z. Li, Z. Chen, F. Bobaru. "A peridynamic approach to solving general discrete dislocation dynamics problems in plasticity and fracture: Part II. Applications", International Journal of Plasticity 159, 103462 (2022). https://doi.org/10.1016/j.ijplas.2022.103462 

  19. Y. Liu, F. Yang, W. Zhou, Z. Chen, F. Bobaru, "Peridynamics modeling of early-age cracking behaviour in continuously reinforced concrete pavement", International Journal of Pavement Technology, (2022). https://doi.org/10.1080/10298436.2022.2111422 

  20. W. Dong, H. Liu, J. Du, X. Zhang, M. Huang, Z. Li, Z. Chen, F. Bobaru, "A peridynamic approach to solving general discrete dislocation dynamics problems in plasticity and fracture: Part I. model description and verification", International Journal of Plasticity, 157, 103401 (2022). https://doi.org/10.1016/j.ijplas.2022.103401

  21. J. Zhao, A. Larios, F. Bobaru, "Construction of a peridynamic model for viscous flow", Journal of Computational Physics, 468, 111509 (2022). https://doi.org/10.1016/j.jcp.2022.111509

  22. Z. Chen, X. Peng, S. Jafarzadeh, F. Bobaru, "Analytical Solutions of Peridynamic Equations. Part I: Transient Heat Diffusion", Journal of Peridynamics and Nonlocal Modeling, 4, 303–335 (2022). https://doi.org/10.1007/s42102-022-00080-7
  23. S. Jafarzadeh, F. Mousavi, A. Larios, F. Bobaru, "A general and fast convolution-based method for peridynamics: Applications to elasticity and brittle fracture", Computer Methods in Applied Mechanics and Engineering392, 114666 (2022). https://doi.org/10.1016/j.cma.2022.114666

  24. S. Jafarzadeh, J. Zhao, M. Shakouri, F. Bobaru, "A peridynamic model for crevice corrosion damage", Electrochimica Acta,  401, 139512 (2022). https://doi.org/10.1016/j.electacta.2021.139512

  25. J. Zhao, S. Jafarzadeh, M. Rahmani, Z. Chen, Y.-R. Kim, F. Bobaru, "A peridynamic model for galvanic corrosion and fracture", Electrochimica Acta391, 138968 (2021). https://doi.org/10.1016/j.electacta.2021.138968

  26. P. Wu, F. Yang, Z. Chen, F. Bobaru, "Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete", Engineering Fracture Mechanics253107863 (2021). https://doi.org/10.1016/j.engfracmech.2021.107863
  27. F. Mousavi, S. Jafarzadeh, F. Bobaru, "An ordinary state-based peridynamic elastoplastic 2D model consistent with J2 plasticity", International Journal of Solids and Structures229, 111146 (2021) https://doi.org/10.1016/j.ijsolstr.2021.111146 
  28. L. Wang, F. Bobaru, "Connections Between the Meshfree Peridynamics Discretization and Graph Laplacian for Transient Diffusion Problems", Journal of Peridynamics and Nonlocal Modeling, 3(4), 307-326 (2021) https://rdcu.be/chqHK https://doi.org/10.1007/s42102-021-00053-2 ,  http://link.springer.com/article/10.1007/s42102-021-00053-2
  29. T. Mei, J. Zhao, Z. Liu, X. Peng, Z. Chen, F. Bobaru, "The Role of Boundary Conditions on Convergence Properties of Peridynamic Model for Transient Heat Transfer", Journal of Scientific Computing, 87, 50 (2021). https://doi.org/10.1007/s10915-021-01469-0 
  30. S. Jafarzadeh, L. Wang, A. Larios, F. Bobaru, "A fast convolution-based method for peridynamic transient diffusion in arbitrary domains", Computer Methods in Applied Mechanics and Engineering, 375, 113633, (2021). https://doi.org/10.1016/j.cma.2020.113633
  31. L. Wu, D. Huang, F. Bobaru, "A reformulated rate-dependent visco-elastic model for dynamic deformation and fracture of PMMA with peridynamics", International Journal of Impact Engineering, 149, 103791 (2021). https://doi.org/10.1016/j.ijimpeng.2020.103791
  32. S. Niazi, Z. Chen, F. Bobaru, "Crack nucleation in brittle and quasi-brittle materials: A peridynamic analysis", Theoretical and Applied Fracture Mechanics112, 102855, (2021). https://doi.org/10.1016/j.tafmec.2020.102855
  33. Z. Chen, S. Jafarzadeh, J. Zhao, F. Bobaru, "A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking", Journal of the Mechanics and Physics of Solids, 146, 104203, (2021) https://doi.org/10.1016/j.jmps.2020.104203
  34. J. Mehrmashhadi, M. Bahadori, F. Bobaru, "On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass",  Engineering Fracture Mechanics, 240107355 (2020). https://doi.org/10.1016/j.engfracmech.2020.107355
  35. P. Wu, J. Zhao, Z. Chen, F. Bobaru, "Validation of a stochastically homogenized peridynamic model for quasi-static fracture in concrete", Engineering Fracture Mechanics, 237, 107293 (2020). https://doi.org/10.1016/j.engfracmech.2020.107293
  36. J. Zhao, Z. Chen, J. Mehrmashhadi, F. Bobaru, "A stochastic multiscale peridynamic model for corrosion-induced fracture in reinforced concrete", Engineering Fracture Mechanics, 229, 106969, (2020). https://doi.org/10.1016/j.engfracmech.2020.106969
  37. R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy, “Additive manufacturing of magnesium alloys”, Bioactive Materials, 5(1): 44-54, (2020). https://doi.org/10.1016/j.bioactmat.2019.12.004
  38. S. Jafarzadeh, A. Larios, F. Bobaru, "Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods", Journal of Peridynamics and Nonlocal Modeling, 2: 85-110 (2020). https://doi.org/10.1007/s42102-019-00026-6
  39. S. Jafarzadeh, Z. Chen, S. Li, F. Bobaru, "A peridynamic mechano-chemical damage model for stress-assisted corrosion", Electrochimica Acta, 323134795, (2019). https://doi.org/10.1016/j.electacta.2019.134795 
  40. Z. Chen, S. Niazi, F. Bobaru, "A peridynamic model for brittle damage and fracture in porous materials", International Journal of Rock Mechanics and Mining Sciences, 122, 104059, (2019). https://doi.org/10.1016/j.ijrmms.2019.104059
  41. J. Mehrmashhadi, L. Wang, F. Bobaru, "Uncovering the dynamic fracture behavior of PMMA with peridynamics: The importance of softening at the crack tip", Engineering Fracture Mechanics219, 106617, (2019). https://doi.org/10.1016/j.engfracmech.2019.106617
  42. J. Mehrmashhadi, Z. Chen, J. Zhao, F. Bobaru, "A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites", Composites Science and Technology182, 107770 (2019). https://doi.org/10.1016/j.compscitech.2019.107770
  43. S. Jafarzadeh, Z. Chen, F. Bobaru, "Computational modeling of pitting corrosion ", Corrosion Reviews, 37(5): 419-439 (2019). https://doi.org/10.1515/corrrev-2019-0049 
  44. S. Jafarzadeh, Z. Chen, J. Zhao, F. Bobaru, "Pitting, lacy covers, and pit merger in stainless steel: 3D peridynamic models", Corrosion Science, 150:17-31 (2019). https://doi.org/10.1016/j.corsci.2019.01.006 
  45. J. Mehrmashhadi, Y. Tang, X. Zhao,  Z. Xu, J. Pan, Q.V. Le, F. Bobaru, "The Effect of Solder Joint Microstructure on the Drop Test Failure: a Peridynamic Analysis", IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(1): 58 - 71 (2019). https://doi.org/10.1109/TCPMT.2018.2862898

  46. J. Zhao, Z. Chen, J. Mehrmashhadi, F. Bobaru, “Construction of a peridynamic model for transient advection-diffusion problems”, International Journal of Heat and Mass Transfer, 126, Part B: 1253-1266 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.075
  47. S. Jafarzadeh, Z. Chen, F. Bobaru, “Peridynamic Modeling of Intergranular Corrosion Damage”, Journal of The Electrochemical Society, 165(7): C362-C374 (2018). https://doi.org/10.1149/2.0821807jes

  48. Z. Xu, G. Zhang, Z. Chen, F. Bobaru, "Elastic vortices and thermally-driven cracks in brittle materials with peridynamics", International Journal of Fracture, 209(1-2): 203–222 (2018). https://doi.org/10.1007/s10704-017-0256-5
  49. G. Zhang, G. A. Gazonas, F. Bobaru, "Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: A peridynamic analysis", International Journal of Impact Engineering, 113: 73-87 (2018). https://doi.org/10.1016/j.ijimpeng.2017.11.010
  50. S. Li, Z. Chen, L. Tan, F. Bobaru, "Corrosion-induced embrittlement in ZK60A Mg alloy", Materials Science and Engineering A, 713: 7-17 (2018). https://doi.org/10.1016/j.msea.2017.12.053
  51. S. Jafarzadeh, Z. Chen, F. Bobaru, “Peridynamic modeling of repassivation in pitting corrosion of stainless steel”, Corrosion, 74(4): 393-414 (2018). http://corrosionjournal.org/doi/abs/10.5006/2615
  52. Quang Van Le, Florin Bobaru, "Surface corrections for peridynamics models in elasticity and fracture", Computational Mechanics, 61(4): 499-518 (2018). http://rdcu.be/vpxv
  53. Quang Van Le, Florin Bobaru, "Objectivity of State-Based Peridynamic Models for Elasticity", Journal of Elasticity131(1): 1-17 (2018). https://doi.org/10.1007/s10659-017-9641-6
  54. G. Zhang, F. Bobaru, "Modeling the evolution of fatigue failure with peridynamics", Romanian  Journal of Technical Sciences - Applied Mechanics, 61(1): 22-40 (2016).
  55. Ziguang Chen, Drew Bakenhus, Florin Bobaru, "A constructive peridynamic kernel for elasticity", Computer Methods in Applied Mechanics and Engineering, 311: 356-373 (2016). doi: 10.1016/j.cma.2016.08.012
  56. Shumin Li, Ziguang Chen, Fei Wang, Bai Cui, Li Tan, Florin Bobaru, "Analysis of Corrosion-Induced Diffusion Layer in ZK60A Magnesium Alloy", Journal of The Electrochemical Society, 163(13): C784-C790 (2016).  doi: 10.1149/2.1001613jes
  57. Guanfeng Zhang, Quang Le, Adrian Loghin, Arun Subramaniyan, Florin Bobaru, "Validation of a peridynamic model for fatigue cracking", Engineering Fracture Mechanics162: 76–94 (2016). doi:10.1016/j.engfracmech.2016.05.008.

  58. G. Sarego,  Q.V. Le, F. Bobaru, M. Zaccariotto, U. Galvanetto, "Linearized state-based peridynamics for 2-D problems", International Journal for Numerical Methods in Engineering,  108(10): 1174-1197 (2016). doi: 10.1002/nme.5250.

  59. Z. Chen, G. Zhang, F. Bobaru, "The Influence of Passive Film Damage on Pitting Corrosion", Journal of The Electrochemical Society163(2),C19-C24, (2016). http://dx.doi.org/10.1149/2.0521602jes

  60. F. Bobaru, G. Zhang, "Why do cracks branch? A peridynamic investigation of dynamic brittle fracture", Special Invited Article Celebrating IJF At 50, International Journal of Fracture196(1): 59-98 (2015). http://dx.doi.org/10.1007/s10704-015-0056-8
  61. Z. Chen, F. Bobaru, "Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion", Computer Physics Communications, 197: 51–60 (2015). http://dx.doi.org/10.1016/j.cpc.2015.08.006

  62. Z. Cheng, G. Zhang, Y. Wang, F. Bobaru, "A peridynamic model for dynamic fracture in functionally graded materials", Composite Structures, 133: 529–546 (2015).   http://dx.doi.org/10.1016/j.compstruct.2015.07.047 
  63. Z. Chen, F. Bobaru, "Peridynamics modeling of pitting corrosion damage", Journal of the Mechanics and Physics of Solids, 78352–381 (2015).  http://dx.doi.org/10.1016/j.jmps.2015.02.015
  64. W. Hu, Y. Wang, J. Yu, C.F. Yen, F. Bobaru, “Impact damage on a thin glass with a thin polycarbonate backing”, International Journal of Impact Engineering62: 152- 165 (2013).
  65. F. Bobaru, YD. Ha, and W. Hu, “Damage progression from impact in layered glass modeled with peridynamics”, Open Engineering, 2(4): 551-561 (2012).
  66. F. Bobaru and W. Hu, “The meaning, selection, and use of the Peridynamic horizon and its relation to crack branching in brittle materials” International Journal of Fracture176: 215–222 (2012).
  67. W. Hu, YD. Ha, F. Bobaru, and S.A. Silling, “The formulation and computation of the nonlocal J-integral in bond-based Peridynamics”, International Journal of Fracture176: 195–206 (2012).
  68. W. Hu, YD. Ha, and F. Bobaru, “Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites”, Computer Methods in Applied Mechanics and Engineering217–220: 247–261 (2012).
  69. F. Bobaru and M. Duangpanya, “A Peridynamic Formulation for Transient Heat Conduction in Bodies with Evolving Discontinuities”, Journal of Computational Physics231(7): 2764-2785 (2012).
  70. YD. Ha and F. Bobaru, “Characteristics of dynamic brittle fracture captured with peridynamics”,Engineering Fracture Mechanics78: 1156–1168 (2011). doi:10.1016/j.engfracmech.2010.11.020.
  71. F. Bobaru and YD. Ha, “Adaptive refinement and multiscale modeling in 2D Peridynamics”,International Journal for Multiscale Computational Engineering, 9(6): 635-659 (2011).
  72. F. Bobaru, “Peridynamics and Multiscale Modeling” Editorial in Special Issue on “Advances in Peridynamics”, International Journal for Multiscale Computational Engineering9(6): vii-ix (2011).
  73. W. Hu, YD. Ha, and F. Bobaru. “Modeling Dynamic Fracture and Damage in Fiber-Reinforced Composites with Peridynamics”, International Journal for Multiscale Computational Engineering9(6): 707–726 (2011).
  74. A.L. Collins, J.W. Addiss, S.M. Walley, K. Promratana, F. Bobaru, W.G. Proud, D.M. Williamson, “The effect of rod nose shape on the internal flow fields during the ballistic penetration of sand”,International Journal of Impact Engineering, 38(12): 951-963 (2011).
  75. F. Bobaru and M. Duangpanya, “The peridynamic formulation for transient heat conduction,”International Journal of Heat and Mass Transfer53(19-20): 4047-4059 (2010).
  76. YD. Ha and F. Bobaru, “Studies of dynamic crack propagation and crack branching with peridynamics,” International Journal of Fracture162(1-2): 229-244 (2010).
  77. S. A. Silling, O. Weckner, E. Askari, and F. Bobaru, “Crack nucleation in a peridynamic solid,”International Journal of Fracture162(1-2): 219-227 (2010).
  78. F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, and J. Xu, “Convergence, adaptive refinement, and scaling in 1D peridynamics”, International Journal for Numerical Methods in Engineering77: 852-877 (2009).
  79. Principal Guest Editor: Florin Bobaru, J.S. Chen, Joseph A. Turner, "Advances in the Dynamics of Granular Materials", Mechanics of Materials41(6): 635-636, June 2009.
  80. Kitti Rattanadit, Florin Bobaru, Konlayut Promratana, Joseph A. Turner, "Force chains and resonant behavior in bending of a granular layer on an elastic support", Mechanics of Materials,41(6): 691-706, June 2009.
  81. P. Qiao, M. Yang, and F. Bobaru, “Impact mechanics and high-energy absorbing materials: review”, Journal of Aerospace Engineering21(4): 235-248 (2008).
  82. F. Bobaru, “Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a peridynamic approach”, Modelling and Simulation in Materials Science and Engineering 15: 397-417 (2007).
  83. F. Bobaru, “Designing optimal volume fractions for functionally graded materials with temperature-dependent material properties”, Journal of Applied Mechanics74: 861-874 (2007).
  84. W. Kang, J.A. Turner, F. Bobaru, L. Yang, and K. Rattanadit, “Granular layers on vibrating plates: Effective bending stiffness and particle-size effects”, Journal of the Acoustical Society of America121: 888-896 (2007).
  85. F. Bobaru and S. Rachakonda, “E(FG)2: a new fixed-grid shape optimization method based on the element-free Galerkin meshfree analysis”, Structural and Multidisciplinary Optimization, 32(3): 215-228 (2006).
  86. R.K. Lakkaraju, F. Bobaru, and S.L. Rohde, “Optimization of multilayer wear-resistant 3 thin films using finite element analysis on stiff and compliant substrates”, Journal of Vacuum Science and Technology (A),  24 (1): 146-155 (2006).
  87. S.A. Silling and F. Bobaru, “Peridynamic modeling of membranes and fibers”, International Journal of Non-Linear Mechanics40(2-3): 395-409 (2005).
  88. F. Bobaru and S. Rachakonda, “Optimal shape profiles for cooling fins of high and low conductivity”, International Journal of Heat and Mass Transfer47(23): 4953-4966 (2004).
  89. F. Bobaru and S. Rachakonda, “Boundary layer in shape optimization of convective fins using a meshfree approach”, International Journal for Numerical Methods in Engineering, 60(7): 1215-1236 (2004).
  90. F. Bobaru and Subrata Mukherjee, “Meshless approach to shape optimization of linear thermoelastic solids”, International Journal for Numerical Methods in Engineering53(4): 765-796 (2002).
  91. F. Bobaru and S. Mukherjee, “Shape Sensitivity Analysis and Shape Optimization in Planar Elasticity Using the Element-Free Galerkin Method”, Computer Methods in Applied Mechanics and Engineering190(32-33) 4319-4337 (2001).
  92. F. Bobaru, “Prestressed Elastic Solid Containing a Crack, Subjected to Normal or Tangential Loadings”, Revue Roumaine des Science Technique, Serie de Mecanique Applique41(5-6): 421-429 (1996).